4,612 research outputs found
Critical role of electronic correlations in determining crystal structure of transition metal compounds
The choice that a solid system "makes" when adopting a crystal structure
(stable or metastable) is ultimately governed by the interactions between
electrons forming chemical bonds. By analyzing 6 prototypical binary
transition-metal compounds we demonstrate here that the orbitally-selective
strong -electron correlations influence dramatically the behavior of the
energy as a function of the spatial arrangements of the atoms. Remarkably, we
find that the main qualitative features of this complex behavior can be traced
back to simple electrostatics, i.e., to the fact that the strong -electron
correlations influence substantially the charge transfer mechanism, which, in
turn, controls the electrostatic interactions. This result advances our
understanding of the influence of strong correlations on the crystal structure,
opens a new avenue for extending structure prediction methodologies to strongly
correlated materials, and paves the way for predicting and studying
metastability and polymorphism in these systems.Comment: Main text: 8 pages, 4 figures, 1 table; Supplemental material: 2
pages, 1 figure, 2 table
- …