18 research outputs found

    MHSCNet: A Multimodal Hierarchical Shot-aware Convolutional Network for Video Summarization

    Full text link
    Video summarization intends to produce a concise video summary by effectively capturing and combining the most informative parts of the whole content. Existing approaches for video summarization regard the task as a frame-wise keyframe selection problem and generally construct the frame-wise representation by combining the long-range temporal dependency with the unimodal or bimodal information. However, the optimal video summaries need to reflect the most valuable keyframe with its own information, and one with semantic power of the whole content. Thus, it is critical to construct a more powerful and robust frame-wise representation and predict the frame-level importance score in a fair and comprehensive manner. To tackle the above issues, we propose a multimodal hierarchical shot-aware convolutional network, denoted as MHSCNet, to enhance the frame-wise representation via combining the comprehensive available multimodal information. Specifically, we design a hierarchical ShotConv network to incorporate the adaptive shot-aware frame-level representation by considering the short-range and long-range temporal dependency. Based on the learned shot-aware representations, MHSCNet can predict the frame-level importance score in the local and global view of the video. Extensive experiments on two standard video summarization datasets demonstrate that our proposed method consistently outperforms state-of-the-art baselines. Source code will be made publicly available

    Simulation and analysis of microring electric field sensor based on a lithium niobate-on-insulator

    Get PDF
    With the increasing sensitivity and accuracy of contemporary high-performance electronic information systems to electromagnetic energy, they are also very vulnerable to be damaged by high-energy electromagnetic fields. In this work, an all-dielectric electromagnetic field sensor is proposed based on a microring resonator structure. The sensor is designed to work at 35 GHz RF field using a lithium niobate-on-insulator (LNOI) material system. The 2.5-D variational finite difference time domain (varFDTD) and finite difference eigenmode (FDE) methods are utilized to analyze the single-mode condition, bending loss, as well as the transmission loss to achieve optimized waveguide dimensions. In order to obtain higher sensitivity, the quality factor (Q-factor) of the microring resonator is optimized to be 106 with the total ring circumference of 3766.59 μm. The lithium niobate layer is adopted in z-cut direction to utilize TM mode in the proposed all-dielectric electric field sensor, and with the help of the periodically poled lithium niobate (PPLN) technology, the electro-optic (EO) tunability of the device is enhanced to 48 pm·μm/V

    Tunable electromagnetically induced transparent window of terahertz metamaterials and Its sensing performance

    Get PDF
    The electromagnetically induced transparency effect of terahertz metamaterials exhibits excellent modulation and sensing properties, and it is critical to investigate the modulation effect of the transparent window by optimizing structural parameters. In this work, a unilateral symmetrical metamaterial structure based on the cut-wire resonator and the U-shaped split ring resonator is demonstrated to achieve electromagnetically induced transparency-like (EIT-like) effect. Based on the symmetrical structure, by changing the structural parameters of the split ring, an asymmetric structure metamaterial is also studied to obtain better tuning and sensing characteristics. The parameters for controlling the transparent window of the metamaterial are investigated in both passive and active modulation modes. In addition, the metamaterial structure based on the cut-wire resonator, unilateral symmetric and asymmetric configurations are investigated for high performance refractive index sensing purposes, and it is found that the first two metamaterial structures can achieve sensitivity responses of 63.6 GHz/RIU and 84.4 GHz/RIU, respectively, while the asymmetric metamaterial is up to 102.3 GHz/RIU. The high sensitivity frequency response of the proposed metamaterial structures makes them good candidates for various chemical and biomedical sensing applications

    Frequency Dependence of Conductivity Characteristics of Seawater Ionic Solution under Magnetic Field

    No full text
    The seawater ionic relaxation processes under magnetic field (B=0.38T) reveal in the properties of conductivity. The conductivity of electrolyte solutions were measured at different concentrations, after application of magnetic field the value of conductivity changed. It was found that the frequency dependence conductivity increase at low frequency and at high frequency the conductivity decrease it is consistent with the theory of Debye-Falkenhagen and the frequency dependence of conductivity decrease with concentration increase occur at low frequency no matter with magnetic field or without it. The results also shown that the relaxation time decrease with the effect of magnetic field

    Frequency Dependence of Conductivity Characteristics of Seawater Ionic Solution under Magnetic Field

    No full text
    The seawater ionic relaxation processes under magnetic field (B=0.38T) reveal in the properties of conductivity. The conductivity of electrolyte solutions were measured at different concentrations, after application of magnetic field the value of conductivity changed. It was found that the frequency dependence conductivity increase at low frequency and at high frequency the conductivity decrease it is consistent with the theory of Debye-Falkenhagen and the frequency dependence of conductivity decrease with concentration increase occur at low frequency no matter with magnetic field or without it. The results also shown that the relaxation time decrease with the effect of magnetic field

    Poincar\'{e} Heterogeneous Graph Neural Networks for Sequential Recommendation

    Full text link
    Sequential recommendation (SR) learns users' preferences by capturing the sequential patterns from users' behaviors evolution. As discussed in many works, user-item interactions of SR generally present the intrinsic power-law distribution, which can be ascended to hierarchy-like structures. Previous methods usually handle such hierarchical information by making user-item sectionalization empirically under Euclidean space, which may cause distortion of user-item representation in real online scenarios. In this paper, we propose a Poincar\'{e}-based heterogeneous graph neural network named PHGR to model the sequential pattern information as well as hierarchical information contained in the data of SR scenarios simultaneously. Specifically, for the purpose of explicitly capturing the hierarchical information, we first construct a weighted user-item heterogeneous graph by aliening all the user-item interactions to improve the perception domain of each user from a global view. Then the output of the global representation would be used to complement the local directed item-item homogeneous graph convolution. By defining a novel hyperbolic inner product operator, the global and local graph representation learning are directly conducted in Poincar\'{e} ball instead of commonly used projection operation between Poincar\'{e} ball and Euclidean space, which could alleviate the cumulative error issue of general bidirectional translation process. Moreover, for the purpose of explicitly capturing the sequential dependency information, we design two types of temporal attention operations under Poincar\'{e} ball space. Empirical evaluations on datasets from the public and financial industry show that PHGR outperforms several comparison methods.Comment: 32 pages, 12 figuew

    Effects of Dietary Phytosterol Supplementation on the Productive Performance, Egg Quality, Length of Small Intestine, and Tibia Quality in Aged Laying Hens

    No full text
    This study aimed at investigating the effects of phytosterols on the productive performance, egg quality, length of small intestine, and tibia quality in aged laying hens. A total of 960 Dawu Jinfeng commercial laying hens (75 weeks of age) were randomly assigned to three groups. Each group had 16 replicates and every replicate contained four cages (five birds/cage). The control group hens received the basal diet without phytosterols. The hens in the experimental groups received a diet containing phytosterols at concentrations of 20 mg/kg and 40 mg/kg for 7 weeks. The results showed that phytosterols had a linearly increasing effect on egg weight, eggshell surface area, albumen height, and haugh unit at week 5 of experiment (p p p p > 0.1). The results of tibia quality detected by micro-CT also showed no difference in the treatment of phytosterols. Therefore, supplementation with 20 mg/kg phytosterols in the diet improves egg quality and increases the length of small intestine, but has no effects on the quality of the tibia

    Investigation of High-Q Lithium Niobate-Based Double Ring Resonator Used in RF Signal Modulation

    Get PDF
    In recent years, millimeter-wave communication has played a crucial role in satellite communication, 5G, and even 6G applications. The millimeter-wave electro-optic modulator is capable of receiving and processing millimeter-wave signals effectively. However, the large attenuation of millimeter waves in the air remains a primary limiting factor for their future applications. Therefore, finding a waveguide structure with a high quality factor (Q-factor) is critical for millimeter-wave electro-optic modulators. This manuscript presents the demonstration of a double ring modulator made of lithium niobate with the specific goal of modulating an RF signal at approximately 35 GHz. By optimizing the microring structure, the double ring resonator with high Q-factor is studied to obtain high sensitivity modulation of the RF signal. This manuscript employs the transfer matrix method to investigate the operational principles of the double ring structure and conducts simulations to explore the influence of structural parameters on its performance. Through a comparison with the traditional single ring structure, it is observed that the Q-factor of the double ring modulator can reach 7.05 × 108, which is two orders of magnitude greater than that of the single ring structure. Meanwhile, the electro-optical tunability of the double ring modulator is 6 pm/V with a bandwidth of 2.4 pm, which only needs 0.4 V driving voltage. The high Q double ring structure proposed in this study has potential applications not only in the field of communication but also as a promising candidate for a variety of chemical and biomedical sensing applications
    corecore