2,176 research outputs found

    Structural Optimization of a Knuckle with Consideration of Stiffness and Durability Requirements

    Get PDF
    The automobile’s knuckle is connected to the parts of the steering system and the suspension system and it is used for adjusting the direction of a rotation through its attachment to the wheel. This study changes the existing material made of GCD45 to Al6082M and recommends the lightweight design of the knuckle as the optimal design technique to be installed in small cars. Six shape design variables were selected for the optimization of the knuckle and the criteria relevant to stiffness and durability were considered as the design requirements during the optimization process. The metamodel-based optimization method that uses the kriging interpolation method as the optimization technique was applied. The result shows that all constraints for stiffness and durability are satisfied using A16082M, while reducing the weight of the knuckle by 60% compared to that of the existing GCD450

    Superwideband Bandwidth Extension Using Normalized MDCT Coefficients for Scalable Speech and Audio Coding

    Get PDF
    A bandwidth extension (BWE) algorithm from wideband to superwideband (SWB) is proposed for a scalable speech/audio codec that uses modified discrete cosine transform (MDCT) coefficients as spectral parameters. The superwideband is first split into several subbands that are represented as gain parameters and normalized MDCT coefficients in the proposed BWE algorithm. We then estimate normalized MDCT coefficients of the wideband to be fetched for the superwideband and quantize the fetch indices. After that, we quantize gain parameters by using relative ratios between adjacent subbands. The proposed BWE algorithm is embedded into a standard superwideband codec, the SWB extension of G.729.1 Annex E, and its bitrate and quality are compared with those of the BWE algorithm already employed in the standard superwideband codec. It is shown from the comparison that the proposed BWE algorithm relatively reduces the bitrate by around 19% with better quality, compared to the BWE algorithm in the SWB extension of G.729.1 Annex E

    The Nerve/Tunnel Index: A New Diagnostic Standard for Carpal Tunnel Syndrome Using Sonography

    Get PDF
    Objectives—To define the relationship between body indices of healthy adults and cross-sectional areas of the carpal tunnel and median nerve and to obtain the nerve/tunnel index, which represents a new standard for diagnosing carpal tunnel syndrome using sonography. Methods—Body indices (height, weight, and body mass index) were analyzed in 60 healthy adults, and electromyography and sonography were also performed. The crosssectional areas of the proximal and distal median nerve and carpal tunnel were obtained by sonography. The proximal and distal nerve/tunnel indices were obtained by calculating the ratio between the proximal and distal cross-sectional areas of the median nerve to those of the carpal tunnel and multiplying the value by 100. Results—Although the proximal cross-sectional areas of the median nerve and body indices showed statistically significant relationships with weak positive correlations, the proximal and distal areas of the carpal tunnel showed relatively stronger correlations with body indices. Between sexes, there were significant differences in the proximal median nerve cross-sectional area (mean ± SD: male, 10.48 ± 3.21 mm2; female, 8.81 ± 3.21 mm2; P < .05) and proximal carpal tunnel area (male, 182.50 ± 21.15 mm2; female, 151.23 ± 21.14 mm2; P < .05). There was no difference in the proximal nerve/tunnel index (male, 5.80% ± 1.72%; female, 5.91% ± 1.63%). There was a statistically significant difference in the distal carpal tunnel cross-sectional area (male, 138.90 ± 20.95 mm2; female, 121.50 ± 18.99 mm2; P < .05) between sexes, but the distal median area (male, 9.99 ± 3.42 mm2; female, 8.46 ± 1.84 mm2) and distal nerve/tunnel index (male, 7.15% ± 2.00%; female, 7.01% ± 1.38%) showed no significant differences. The proximal index was significantly higher than the distal index (proximal, 5.85% ± 1.66%; distal, 7.08% ± 1.71%). Conclusions—The nerve/tunnel index is unaffected by body indices or sex and thus may be a useful and objective standard for diagnosing carpal tunnel syndrome

    EFFECTS OF MO, CR, AND V ADDITIONS ON TENSILE AND CHARPY IMPACT PROPERTIES OF API X80 PIPELINE STEELS

    Get PDF
    In this study, four API X80 pipeline steels were fabricated by varying Mo, Cr, and V additions, and their microstructures and crystallographic orientations were analyzed to investigate the effects of their alloying compositions on tensile properties and Charpy impact properties. Because additions of Mo and V promoted the formation of fine acicular ferrite (AF) and granular bainite (GB) while prohibiting the formation of coarse GB, they increased the strength and upper-shelf energy (USE) and decreased the energy transition temperature (ETT). The addition of Cr promoted the formation of coarse GB and hard secondary phases, thereby leading to an increased effective grain size, ETT, and strength, and a decreased USE. The addition of V resulted in a higher strength, a higher USE, a smaller effective grain size, and a lower ETT, because it promoted the formation of fine and homogeneous of AF and GB. The steel that contains 0.3 wt pct Mo and 0.06 wt pct V without Cr had the highest USE and the lowest ETT, because its microstructure was composed of fine AF and GB while its maintained excellent tensile properties.X1126sciescopu

    Signal Transduction Mechanisms Underlying Group I mGluR-mediated Increase in Frequency and Amplitude of Spontaneous EPSCs in the Spinal Trigeminal Subnucleus Oralis of the Rat

    Get PDF
    Group I mGluRs (mGluR1 and 5) pre- and/or postsynaptically regulate synaptic transmission at glutamatergic synapses. By recording spontaneous EPSCs (sEPSCs) in the spinal trigeminal subnucleus oralis (Vo), we here investigated the regulation of glutamatergic transmission through the activation of group I mGluRs. Bath-applied DHPG (10 μM/5 min), activating the group I mGluRs, increased sEPSCs both in frequency and amplitude; particularly, the increased amplitude was long-lasting. The DHPG-induced increases of sEPSC frequency and amplitude were not NMDA receptor-dependent. The DHPG-induced increase in the frequency of sEPSCs, the presynaptic effect being further confirmed by the DHPG effect on paired-pulse ratio of trigeminal tract-evoked EPSCs, an index of presynaptic modulation, was significantly but partially reduced by blockades of voltage-dependent sodium channel, mGluR1 or mGluR5. Interestingly, PKC inhibition markedly enhanced the DHPG-induced increase of sEPSC frequency, which was mainly accomplished through mGluR1, indicating an inhibitory role of PKC. In contrast, the DHPG-induced increase of sEPSC amplitude was not affected by mGluR1 or mGluR5 antagonists although the long-lasting property of the increase was disappeared; however, the increase was completely inhibited by blocking both mGluR1 and mGluR5. Further study of signal transduction mechanisms revealed that PLC and CaMKII mediated the increases of sEPSC in both frequency and amplitude by DHPG, while IP3 receptor, NO and ERK only that of amplitude during DHPG application. Altogether, these results indicate that the activation of group I mGluRs and their signal transduction pathways differentially regulate glutamate release and synaptic responses in Vo, thereby contributing to the processing of somatosensory signals from orofacial region

    An experimental study on the shear property dependency of high-damping rubber bearings

    Get PDF
    This paper investigates the characteristics of high-damping rubber bearings (HDRBs) through various prototype tests. The characteristics were dependent on the displacements, number of load cycles, frequencies, vertical pressure, temperature, shear deformation capability, and vertical stiffness. The prototype tests showed that the displacement was the most influential factor on the characteristics of the HDRB. The effective stiffness and equivalent damping of the HDRB decreased with the displacement and increased with the frequency. The effective stiffness decreased at higher vertical pressure, while the equivalent damping increased. The equivalent damping was more dependent on the vertical pressure than the effective stiffness. The results show that careful examination is required to design the effective stiffness and equivalent damping ratio while considering the dependencies of the design displacement and excitation velocity

    New Heteroleptic Cobalt Precursors for Deposition of Cobalt-Based Thin Films

    Get PDF
    A new series of heteroleptic complexes of cobalt were synthesized using aminoalkoxide and ??-diketonate ligands. The complexes, [Co(dmamp)(acac)]2 (3), [Co(dmamp)(tfac)]2 (4), [Co(dmamp)(hfac)]2 (5), [Co(dmamp)(tmhd)]2 (6), and [Co(dmamb)(tmhd)]2 (7), were prepared by two-step substitution reactions and studied using Fourier transform infrared spectroscopy, mass spectrometry, elemental analysis, and thermogravimetric analysis (TGA). Complexes 3-7 displayed dimeric molecular structures for all of the complexes with cobalt metal centers interconnected by ??2-O bonding by the alkoxy oxygen atom. TGA and a thermal study of the complexes displayed high volatilities and stabilities for complexes 6 and 7, with sublimation temperatures of 120 ??C/0.5 Torr and 130 ??C/0.5 Torr, respectively

    Echo Path Transfer Function Estimation for Spectral Subtraction-based Acoustic Echo Suppression

    Get PDF
    In this study, we propose a novel technique for spectral subtraction (SS)-based acoustic echo suppression (AES). Conventional AES methods based on SS apply fixed weights to the estimated echo path transfer function (EPTF) at the current signal segment and to the EPTF estimated until the previous time interval. We propose a new EPTF estimation approach that adaptively updates the weight parameters in response to abrupt changes in the acoustic environment. From the experiments, we conclude that the developed techniques can be successfully used for the SS-based AES systems

    Association between volume status assessed by bioelectrical impedance analysis, lung ultrasound, or weight change and mortality in patients with sepsis-associated acute kidney injury receiving continuous kidney replacement therapy

    Get PDF
    Background Fluid overload is an independent risk factor of mortality in patients with acute kidney injury (AKI) receiving continuous kidney replacement therapy (CKRT). However, the association between fluid status, as assessed by bioelectrical impedance analysis (BIA) or lung ultrasound, and survival in patients with AKI requiring CKRT has not been established. Methods We analyzed 36 participants with sepsis-associated AKI who received CKRT at a tertiary hospital. The main exposures were volume surrogates: 1) overhydration normalized by extracellular water (OH/ECW, L/L) assessed by BIA, 2) the number of B-lines measured by lung ultrasound, and 3) weight change ([body weight at CKRT initiation – body weight at admission] × 100/body weight at admission). The primary outcome was the 28-day mortality. Results Seventeen participants (47.2%) died within 28 days. There were no significant correlations between OH/ECW and weight change (R2 = 0.040, p = 0.24), number of B-lines and OH/ECW (R2 = 0.056, p = 0.16), or weight change and number of B-lines (R2 = 0.014, p = 0.49). Kaplan-Meier analyses revealed that patients in the highest tertile of OH/ECW showed a significantly lower cumulative 28-day survival probability than the others (the lowest + middle tertiles). The survival probability of participants in the highest tertile of the number of B-lines or weight change did not differ from that of their counterparts. In a multivariate Cox proportional hazard model, the hazard ratio for the highest tertile of OH/ECW was 3.83 (95% confidence interval, 1.04–14.03). Conclusion Volume overload assessed using BIA (OH/ECW) was associated with the 28-day survival rate in patients with sepsis-associated AKI who received CKRT
    corecore