12 research outputs found

    High-speed and high-SNR photoacoustic microscopy based on a galvanometer mirror in non-conducting liquid

    Get PDF
    Optical-resolution photoacoustic microscopy (OR-PAM), a promising microscopic imaging technique with high ultrasound resolution and superior optical sensitivity, can provide anatomical, functional, and molecular information at scales ranging from the microvasculature to single red blood cells. In particular, real-time OR-PAM imaging with a high signal-to-noise ratio (SNR) is a prerequisite for widespread use in preclinical and clinical applications. Although several technical approaches have been pursued to simultaneously improve the imaging speed and SNR of OR-PAM, they are bulky, complex, not sensitive, and/or not actually real-time. In this paper, we demonstrate a simple and novel OR-PAM technique which is based on a typical galvanometer immersed in non-conducting liquid. Using an opto-ultrasound combiner, this OR-PAM system achieves a high SNR and fast imaging speed. It takes only 2 seconds to acquire a volumetric image with a wide field of view (FOV) of 4 x 8 mm(2) along the X and Y axes, respectively. The measured lateral and axial resolutions are 6.0 and 37.7 mu m, respectively. Finally, as a demonstration of the system's capability, we successfully imaged the microvasculature in a mouse ear in vivo. Our new method will contribute substantially to the popularization and commercialization of OR-PAM in various preclinical and clinical applications.11Ysciescopu

    Optical Interferometric Fringe Pattern-Incorporated Spectrum Calibration Technique for Enhanced Sensitivity of Spectral Domain Optical Coherence Tomography

    No full text
    Depth-visualizing sensitivity can be degraded due to imperfect optical alignment and non-equidistant distribution of optical signals in the pixel array, which requires a measurement of the re-sampling process. To enhance this depth-visualizing sensitivity, reference and sample arm-channeled spectra corresponding to different depths using mirrors were obtained to calibrate the spectrum sampling prior to Fourier transformation. During the process, eight interferogram patterns corresponding to point spread function (PSF) signals at eight optical path length differences were acquired. To calibrate the spectrum, generated intensity points of the original interferogram were re-indexed towards a maximum intensity range, and these interferogram re-indexing points were employed to generate a new lookup table. The entire software-based process consists of eight consecutive steps. Experimental results revealed that the proposed method can achieve images with a high depth-visualizing sensitivity. Furthermore, the results validate the proposed method as a rapidly performable spectral calibration technique, and the real-time images acquired using our technique confirm the simplicity and applicability of the method to existing optical coherence tomography (OCT) systems. The sensitivity roll-off prior to the spectral calibration was measured as 28 dB and it was halved after the calibration process

    Integrated Quad-Scanner Strategy-Based Optical Coherence Tomography for the Whole-Directional Volumetric Imaging of a Sample

    No full text
    Whole-directional scanning methodology is required to observe distinctive features of an entire physical structure with a three dimensional (3D) visualization. However, the implementation of whole-directional scanning is challenging for conventional optical coherence tomography (OCT), which scans a limited portion of the sample by utilizing unidirectional and bidirectional scanning methods. Therefore, in this paper an integrated quad-scanner (QS) strategy-based OCT method was implemented to obtain the whole-directional volumetry of a sample by employing four scanning arms installed around the sample. The simultaneous and sequential image acquisition capabilities are the conceptual key points of the proposed QS-OCT method, and were implemented using four precisely aligned scanning arms and applied in a complementary way according to the experimental criteria. To assess the feasibility of obtaining whole-directional morphological structures, a roll of Scotch tape, an ex vivo mouse heart, and kidney specimens were imaged and independently obtained tissue images at different directions were delicately merged to compose the 3D volume data set. The results revealed the potential merits of QS-OCT-based whole-directional imaging, which can be a favorable inspection method for various discoveries that require the dynamic coordinates of the whole physical structure

    Fast Industrial Inspection of Optical Thin Film Using Optical Coherence Tomography

    No full text
    An application of spectral domain optical coherence tomography (SD-OCT) was demonstrated for a fast industrial inspection of an optical thin film panel. An optical thin film sample similar to a liquid crystal display (LCD) panel was examined. Two identical SD-OCT systems were utilized for parallel scanning of a complete sample in half time. Dual OCT inspection heads were utilized for transverse (fast) scanning, while a stable linear motorized translational stage was used for lateral (slow) scanning. The cross-sectional and volumetric images of an optical thin film sample were acquired to detect the defects in glass and other layers that are difficult to observe using visual inspection methods. The rapid inspection enabled by this setup led to the early detection of product defects on the manufacturing line, resulting in a significant improvement in the quality assurance of industrial products

    Numerical-Sampling-Functionalized Real-Time Index Regulation for Direct k-Domain Calibration in Spectral Domain Optical Coherence Tomography

    No full text
    An index-regulation technique functionalized by numerical sampling for direct calibration of the non-linear wavenumber (k)-domain to a linear domain in spectral domain optical coherence tomography (SD-OCT) is proposed. The objective of the developed method is to facilitate high-resolution identification of microstructures in biomedical imaging. Subjective optical alignments caused by nonlinear sampling of interferograms in the k-domain tend to hinder depth-dependent signal-to-noise ratios (SNR) and axial resolution in SD-OCT. Moreover, the optical-laser-dependent k-domain requires constant recalibrated in accordance with each laser transition, thereby necessitating either hardware or heavy software compensations. As the key feature of the proposed method, a relatively simple software-based k-domain mask calibration technique was developed to enable real-time linear sampling of k-domain interpolations whilst facilitating image observation through use of an index-regulation technique. Moreover, it has been confirmed that dispersion can be simultaneously compensated with noise residuals generated using the proposed technique, and that use of complex numerical or hardware techniques are no longer required. Observed results, such as fall-off, SNR, and axial resolution clearly exhibit the direct impact of the proposed technique, which could help investigators rapidly achieve optical-laser-independent high-quality SD-OCT images

    Vision-Inspection-Synchronized Dual Optical Coherence Tomography for High-Resolution Real-Time Multidimensional Defect Tracking in Optical Thin Film Industry

    No full text
    Large-scale product inspection is an important aspect in thin film industry to identify defects with a high precision. Although vision line scan camera (VLSC)-based inspection has been frequently implemented, it is limited to surface inspections. Therefore, to overcome the conventional drawbacks, there is a need to extend inspection capabilities to internal structures. Considering that VLSC systems have access to rich information, such as color and texture, high-resolution real-time multimodal optical synchronization between VLSC and dual spectral domain optical coherence tomography (SD-OCT) systems was developed with a laboratory customized in-built automated defect-tracking algorithm for optical thin films (OTFs). Distinguishable differences in the color and texture of the bezel area were precisely determined by the VLSC. Detailed OCT assessments were conducted to verify the detection of previously unobtainable border regions and micrometer-range sub-surface defects. To enhance the accuracy of the method, VLSC images were aided for the precise surface defect identification using OCT and the image acquisition, signal processing, image analysis, and classification of both techniques were simultaneously processed in real-time for industrial applicability. The results demonstrate that the proposed method is capable of detecting and enumerating total number of defects in OTF samples with exceptional resolution and in a cost-effective manner facilitating wide area inspection for OTF samples
    corecore