22 research outputs found

    Mapping the Flow of Forest Migration through the City under Climate Change

    Get PDF
    Rapid climate change will create extreme problems for the biota of the planet. Much of it will have to migrate towards the poles at a rate far beyond normal speeds. In this context, the concept of assisted migration has been proposed to facilitate the migration of trees. Yet current practices of assisted migration focus on “where tree species should be in the future” and thus have many uncertainties. We suggest that more attention should be paid on the flow of forest migration. Therefore, this study develops a three-step methodology for mapping the flow of forest migration under climate change. Since the migration of trees depends on the activities of their seed dispersal agents, the accessibility of landscapes for dispersal agents is mainly considered in this study. The developed method combines a least-cost path model, a graph-based approach, and a circuit theory-based model. The least-cost path model is applied to map the movement of dispersal agents, based on which graph-based indices are used to evaluate the accessibility of landscapes for dispersal agents, which in turn is used as the basis for circuit theory-based modelling to map the flow of forest migration. The proposed method is demonstrated by a case study in the Greater Manchester area, UK. The resulting maps identify areas with high probability of climate-driven migration of trees

    Dynamic characteristics of sulfur, iron and phosphorus in coastal polluted sediments, north China

    Get PDF
    The cycling of sulfur (S), iron (Fe) and phosphorus (P) in sediments and pore water can impact the water quality of overlying water. In a heavily polluted river estuary (Yantai, China), vertical profiles of fluxes of dissolved sulfide, Fe2+ and dissolved reactive phosphorus (DRP) in sediment pore water were investigated by the Diffusive Gradients in Thin films technique (DGT). Vertical fluxes of S, Fe, P in intertidal sediment showed the availability of DRP increased while the sulfide decreased with depth in surface sediment, indicating that sulfide accumulation could enhance P release in anoxic sediment. In sites with contrasting salinity, the relative dominance of iron and sulfate reduction was different, with iron reduction dominant over sulfate reduction in the upper sediment at an intertidal site but the reverse true in a freshwater site, with the other process dominating at depth in each case. Phosphate release was largely controlled by iron reduction

    Can large-scale tree planting in China offset the loss of climate connectivity due to deforestation?

    Full text link
    Changes of climate connectivity for the forests across Mainland China (excluding islands), including the extent of climate connectivity (ECC) and the probability of climate connectivity (PCC) for species with maximum dispersal distances of 3km, 10km, 30km, and 100km. </p

    Climate Connectivity of European Forests for Species Range Shifts

    Full text link
    Forest connectivity is important for the range shifts and long-term persistence of forest-dependent species, especially in the context of climate change. This study assessed the climate connectivity of European forests for species to track suitable climate conditions as the climate warms. Here, climate connectivity was calculated as the temperature difference between each forest patch and the coolest patch that can be reached along temperature gradients. We found that, overall, about 36% of the total forested area in Europe has achieved successful climate connectivity under the moderate emission scenario (SSP245), whereby species range shifts could circumvent the impact of climate warming. The percentage is much lower under the highest emission scenario (SSP585), which is only 12%. To identify forest areas of high importance for climate connectivity, we further evaluated the potential of each forest patch to serve as a stepping stone for species range shifts. Our results showed that about 94% of the European forested area is expected to experience species range shifts. Our study identified sites of high conservation value for improving and sustaining forest connectivity to facilitate climate-driven range shifts and thus could provide information for climate-smart management of European forests

    Can large-scale tree planting in China compensate for the loss of climate connectivity due to deforestation?

    Full text link
    Extensive deforestation has been a major reason for the loss of forest connectivity, impeding species range shifts under current climate change. Over the past decades, the Chinese government launched a series of afforestation and reforestation projects to increase forest cover, yet whether the new forests can compensate for the loss of connectivity due to deforestation-and where future tree planting would be most effective-remains largely unknown. Here, we evaluate changes in climate connectivity across China's forests between 2015 and 2019. We find that China's large-scale tree planting alleviated the negative impacts of forest loss on climate connectivity, improving the extent and probability of climate connectivity by 0-0.2 °C and 0-0.03, respectively. The improvements were particularly obvious for species with short dispersal distances (i.e., 3 km and 10 km). Nevertheless, only ~55 % of the trees planted in this period could serve as stepping stones for species movement. This indicates that focusing solely on the quantitative target of forest coverage without considering the connectivity of forests may miss opportunities in tree planting to facilitate climate-induced range shifts. More attention should be paid to the spatial arrangement of tree plantations and their potential as stepping stones. We then identify priority areas for future tree planting to create effective stepping stones. Our study highlights the potential of large-scale tree planting to facilitate range shifts. Future tree-planting efforts should incorporate the need for species range shifts to achieve more biodiversity conservation benefits under climate change
    corecore