42 research outputs found

    Planckian Scattering Beyond the Eikonal Approximation in the Functional Approach

    Full text link
    In the framework of functional integration the non-leading terms to leading eikonal behavior of the Planckian-energy scattering amplitude are calculated by the straight-line path approximation. We show that the allowance for the first-order correction terms leads to the appearance of retardation effect. The singular character of the correction terms at short distances is also noted, and they may be lead ultimately to the appearance of non-eikonal contributions to the scattering amplitudes.Comment: 15 pages, no figure

    Von Neumann's Quantization of General Relativity

    Full text link
    Von Neumann's procedure is applied for quantization of General Relativity. We quantize the initial data of dynamical variables at the Planck epoch, where the Hubble parameter coincides with the Planck mass. These initial data are defined via the Fock simplex in the tangent Minkowskian space-time and the Dirac conformal interval. The Einstein cosmological principle is applied for the average of the spatial metric determinant logarithm over the spatial volume of the visible Universe. We derive the splitting of the general coordinate transformations into the diffeomorphisms (as the object of the second N\"other theorem) and the initial data transformations (as objects of the first N\"other theorem). Following von Neumann, we suppose that the vacuum state is a quantum ensemble. The vacuum state is degenerated with respect to quantum numbers of non-vacuum states with the distribution function that yields the Casimir effect in gravidynamics in analogy to the one in electrodynamics. The generation functional of the perturbation theory in gravidynamics is given as a solution of the quantum energy constraint. We discuss the region of applicability of gravidynamics and its possible predictions for explanation of the modern observational and experimental data.Comment: 14 pages, updated version with extended discussio

    High Energy Scattering in the Quasi-Potential Approach

    Full text link
    Asymptotic behavior of the scattering amplitude for two scalar particles by scalar, vector and tensor exchanges at high energy and fixed momentum transfers is reconsidered in quantum field theory. In the framework of the quasi-potential approach and the modified perturbation theory a systematic scheme of finding the leading eikonal scattering amplitudes and its corrections are developed and constructed.The connection between the solutions obtained by quasi-potential and functional approaches is also discussed.The first correction to leading eikonal amplitude is found. Keywords: Eikonal scattering theory, Quantum gravity.Comment: 18 pages. arXiv admin note: substantial text overlap with arXiv:0804.343
    corecore