1,672 research outputs found

    Neuroprotective Effects of Astaxanthin in Oxygen-Glucose Deprivation in SH-SY5Y Cells and Global Cerebral Ischemia in Rat

    Get PDF
    Astaxanthin (ATX), a naturally occurring carotenoid pigment, is a powerful biological antioxidant. In the present study, we investigated whether ATX pharmacologically offers neuroprotection against oxidative stress by cerebral ischemia. We found that the neuroprotective efficacy of ATX at the dose of 30 mg/kg (n = 8) was 59.5% compared with the control group (n = 3). In order to make clear the mechanism of ATX neuroprotection, the up-regulation inducible nitric oxide synthase (iNOS) and heat shock proteins (HSPs) together with the oxygen glucose deprivation (OGD) in SH-SY5Y cells were also investigated. The induction of various factors involved in oxidative stress processes such as iNOS was suppressed by the treatment of ATX at 25 and 50 µM after OGD-induced oxidative stress. In addition, Western blots showed that ATX elevated of heme oxygenase-1 (HO-1; Hsp32) and Hsp70 protein levels in in vitro. These results suggest that the neuroprotective effects of ATX were related to anti-oxidant activities in global ischemia

    Total Reflection and Negative Refraction of Dipole-Exchange Spin Waves at Magnetic Interfaces: Micromagnetic Modeling Study

    Get PDF
    We demonstrated that dipole-exchange spin waves traveling in geometrically restricted magnetic thin films satisfy the same laws of reflection and refraction as light waves. Moreover, we found for the first time novel wave behaviors of dipole-exchange spin waves such as total reflection and negative refraction. The total reflection in laterally inhomogeneous thin films composed of two different magnetic materials is associated with the forbidden modes of refracted dipole-exchange spin waves. The negative refraction occurs at a 90 degree domain-wall magnetic interface that is introduced by a cubic magnetic anisotropy in the media, through the anisotropic dispersion of dipole-exchange spin waves.Comment: 13 pages, 5 figure

    Treatment of gouty arthritis is associated with restoring the gut microbiota and promoting the production of short-chain fatty acids

    Get PDF
    Abstract Introduction Although factors initiating the inflammatory response to monosodium urate crystals have been identified, the role of the gut microbiota and their metabolites on gout remains unknown. This study aimed to investigate the changes in both gut microbiota and short-chain fatty acids (SCFAs) according to inflammatory states of gout in the same patients. Methods This study enrolled 20 patients with gout in the acute state who had active joints and were followed up until the recovery state with no active joints. Blood and fecal samples were simultaneously collected within 3 days for each disease state. The stool microbiome was analyzed using 16S rRNA sequencing, and serum SCFAs were measured by gas chromatography-mass spectrometry. Differences in the gut microbiome and serum SCFAs were compared between the acute and recovery states. Results Beta diversity of the microbiome was significantly different between the acute and recovery states in terms of weighted UniFrac distance. In the recovery state, Prevotellaceae (p = 0.006) and the genus Prevotella (p = 0.009) were significantly enriched, whereas Enterobacteriaceae (p = 0.019) and its derivative genus Shigella (p = 0.023) were significantly decreased compared to the acute state. Similarly, the levels of acetate were dramatically increased in the recovery state compared to the acute state (p < 0.010). The levels of propionate and butyrate tended to increase but without statistical significance. Conclusion Substantial alterations of bacterial composition with the promotion of SCFA formation (especially acetate) were found after treatment in patients with gouty arthritis

    Fatty liver disease and the risk of erosive oesophagitis in the Korean population: a cross-sectional study

    Get PDF
    Objectives To investigate an association between fatty liver disease (FLD) and erosive oesophagitis. Design and setting This was a cross-sectional study of subjects selected from examinees who underwent health check-up, including oesophagogastroduodenoscopy in one hospital between 2004 and 2011. Erosive oesophagitis was classified according to the Los Angeles classification and FLD was diagnosed with ultrasonography. The anthropometric and laboratory data of the subjects were analysed using X-2 test and multivariate logistic regression. Additionally, we have analysed our data with two-stage least square estimation using the Baltagi-Chang one-way model to clarify unobserved confounding variable. Primary outcome measure The effect of FLD on erosive oesophagitis. Results Among the 14 723 eligible subjects, 4232 (28.7%) subjects diagnosed with FLD were classified into the fatty liver group and 10 491 (71.3%) subjects without FLD were classified into the non-fatty liver group. The incidence rate of erosive oesophagitis was significantly higher in the fatty liver group than in the non-fatty liver group (10.4% vs6.1%, p< 0.0001). The multivariate analysis revealed that the fatty liver group was significantly associated with erosive oesophagitis (OR 1.19, 95% CI 1.03 to 1.37, p= 0.016). Conclusion FLD diagnosed by ultrasonography is an independent risk factor of erosive oesophagitis. It suggests that FLD-related metabolic abnormality may be associated with erosive oesophagitis

    Sondheimer Oscillation as a Fingerprint of Surface Dirac Fermions

    Full text link
    Topological states of matter challenge the paradigm of symmetry breaking, characterized by gapless boundary modes and protected by the topological property of the ground state. Recently, angle-resolved photoemission spectroscopy (ARPES) has revealed that semiconductors of Bi2_{2}Se3_{3} and Bi2_{2}Te3_{3} belong to such a class of materials. Here, we present undisputable evidence for the existence of gapless surface Dirac fermions from transport in Bi2_{2}Te3_{3}. We observe Sondheimer oscillation in magnetoresistance (MR). This oscillation originates from the quantization of motion due to the confinement of electrons within the surface layer. Based on Sondheimer's transport theory, we determine the thickness of the surface state from the oscillation data. In addition, we uncover the topological nature of the surface state, fitting consistently both the non-oscillatory part of MR and the Hall resistance. The side-jump contribution turns out to dominate around 1 T in Hall resistance while the Berry-curvature effect dominates in 3 T \sim 4 T

    Spin and Chirality Effects in Antler-Topology Processes at High Energy e+ee^+e^- Colliders

    Full text link
    We perform a model-independent investigation of spin and chirality correlation effects in the antler-topology processes e+eP+P(+D0)(Dˉ0)e^+e^-\to\mathcal{P}^+\mathcal{P}^-\to (\ell^+ \mathcal{D}^0) (\ell^-\mathcal{\bar{D}}^0) at high energy e+ee^+e^- colliders with polarized beams. Generally the production process e+eP+Pe^+e^-\to\mathcal{P}^+\mathcal{P}^- can occur not only through the ss-channel exchange of vector bosons, V0\mathcal{V}^0, including the neutral Standard Model (SM) gauge bosons, γ\gamma and ZZ, but also through the ss- and tt-channel exchanges of new neutral states, S0\mathcal{S}^0 and T0\mathcal{T}^0, and the uu-channel exchange of new doubly-charged states, U\mathcal{U}^{--}. The general set of (non-chiral) three-point couplings of the new particles and leptons allowed in a renormalizable quantum field theory is considered. The general spin and chirality analysis is based on the threshold behavior of the excitation curves for P+P\mathcal{P}^+\mathcal{P}^- pair production in e+ee^+e^- collisions with longitudinal and transverse polarized beams, the angular distributions in the production process and also the production-decay angular correlations. In the first step, we present the observables in the helicity formalism. Subsequently, we show how a set of observables can be designed for determining the spins and chiral structures of the new particles without any model assumptions. Finally, taking into account a typical set of approximately chiral invariant scenarios, we demonstrate how the spin and chirality effects can be probed experimentally at a high energy e+ee^+e^- collider.Comment: 50 pages, 14 figures, 6 tables, matches version published in EPJ

    Polarization-selective vortex-core switching by orthogonal Gaussian-pulse currents

    Get PDF
    We experimentally demonstrate low-power-consumption vortex-core switching in magnetic nanodisks using tailored rotating magnetic fields that are produced with orthogonal and unipolar Gaussian-pulse currents. Optimal width of the orthogonal pulses and their time delay are found to be determined only by the angular eigenfrequency {\omega}_D for a given vortex-state disk of its polarization p, such that {\sigma} = 1/{\omega}_D and {\Delta}t = {\pi}p/2{\omega}_D, as studied from analytical and micromagnetic numerical calculations. The estimated optimal pulse parameters are in good agreements with the experimentally found results. This work provides a foundation for energy-efficient information recording in vortex-core cross-point architecture.Comment: 32 pages, 10 figure

    Performance of Monolayer Graphene Nanomechanical Resonators with Electrical Readout

    Full text link
    The enormous stiffness and low density of graphene make it an ideal material for nanoelectromechanical (NEMS) applications. We demonstrate fabrication and electrical readout of monolayer graphene resonators, and test their response to changes in mass and temperature. The devices show resonances in the MHz range. The strong dependence of the resonant frequency on applied gate voltage can be fit to a membrane model, which yields the mass density and built-in strain. Upon removal and addition of mass, we observe changes in both the density and the strain, indicating that adsorbates impart tension to the graphene. Upon cooling, the frequency increases; the shift rate can be used to measure the unusual negative thermal expansion coefficient of graphene. The quality factor increases with decreasing temperature, reaching ~10,000 at 5 K. By establishing many of the basic attributes of monolayer graphene resonators, these studies lay the groundwork for applications, including high-sensitivity mass detectors

    Flexible IZO/Ag/IZO/Ag multilayer electrode grown on a polyethylene terephthalate substrate using roll-to-roll sputtering

    Get PDF
    We investigated the optical, electrical, structural, and surface properties of roll-to-roll [R2R] sputter-grown flexible IZO/Ag/IZO/Ag [IAIA] multilayer films on polyethylene terephthalate substrates as a function of the top indium zinc oxide [IZO] thickness. It was found that the optical transmittance of the IAIA multilayer was significantly influenced by the top IZO layer thickness, which was grown on identical AIA multilayers. However, the sheet resistance of the IAIA multilayer was maintained between the range 5.01 to 5.1 Ω/square regardless of the top IZO thickness because the sheet resistance of the IAIA multilayer was mainly dependent on the thickness of the Ag layers. Notably, the optimized IAIA multilayer had a constant resistance change (ΔR/R0) under repeated outer bending tests with a radius of 10 mm. The mechanical integrity of the R2R-sputtered IAIA multilayer indicated that hybridization of an IZO and Ag metal layer is a promising flexible electrode scheme for the next-generation flexible optoelectronics
    corecore