28 research outputs found

    Changes in proteoglycans in endothelial cells under hyperglycemic conditions

    Get PDF
    Heparan sulfate proteoglycan (HSPG) or heparan sulfate (HS) degradation may contribute to endothelial cell (EC) dysfunction in diabetes. HSPGs, syndecan and perlecan, contain a protein core with mainly HS glycosaminoglycans (GAGs) attached. HSPGs modulate growth factors and function in membrane filtering. Heparanase induction is likely responsible for diabetic HS degradation. Heparin protects endothelium and insulin regulates glucose metabolism. Our objectives were to observe HSPG changes by studying EC GAG content and gene expression of syndecan, perlecan and heparanase under hyperglycemic conditions with insulin and/or heparin treatment. GAGs, including HS, were determined by the carbazole assay and visualized by agarose gel electrophoresis in porcine aortic EC cultures treated with high glucose (30 mM) and/or insulin (0.01 U/ml) for 24, 48 and 72 hours and/or heparin (0.5 µg/ml) for 72 hours. High glucose decreased cell GAGs and increased medium GAGs. GAGs increased with time in control cultures and in high glucose plus insulin treated medium. GAGs were decreased with insulin but increased with insulin or heparin plus high glucose. Confluent cultured human aortic ECs were incubated with control medium, high glucose and/or insulin and/or heparin for 24 hours. Real time PCR determination showed that: high glucose increased heparanase, decreased syndecan and had no effect on perlecan mRNA; insulin or heparin with/without high glucose decreased and insulin and heparin with high glucose increased heparanase mRNA; heparin and insulin with high glucose increased but insulin decreased syndecan mRNA. Actinomycin D (10 µg/ml) inhibited heparanase and syndecan mRNA with high glucose plus insulin plus heparin and inhibited heparanase mRNA with high glucose compared to time 0 but not â-actin after addition for 0, 2, 4, 8 and 24 hours. Bioinformatic studies revealed that transcription factor Sp1 activates heparanase promoter by high glucose and may play a role in regulation of perlecan and syndecan promoters. Insulin or heparin inhibited the reduction in EC GAGs and syndecan mRNA and induction in heparanase by high glucose, indicating their protective effect. Decreased GAGs by insulin may relate to the pathology of hyperinsulinemia. Transcriptional regulation by heparin and/or insulin may cause variation in gene expression of heparanase, syndecan and perlecan

    Endothelial cell injury by high glucose and heparanase is prevented by insulin, heparin and basic fibroblast growth factor

    Get PDF
    BACKGROUND: Uncontrolled hyperglycemia is the main risk factor in the development of diabetic vascular complications. The endothelial cells are the first cells targeted by hyperglycemia. The mechanism of endothelial injury by high glucose is still poorly understood. Heparanase production, induced by hyperglycemia, and subsequent degradation of heparan sulfate may contribute to endothelial injury. Little is known about endothelial injury by heparanase and possible means of preventing this injury. OBJECTIVES: To determine if high glucose as well as heparanase cause endothelial cell injury and if insulin, heparin and bFGF protect cells from this injury. METHODS: Cultured porcine aortic endothelial cells were treated with high glucose (30 mM) and/or insulin (1 U/ml) and/or heparin (0.5 μg/ml) and /or basic fibroblast growth factor (bFGF) (1 ng/ml) for seven days. Cells were also treated with heparinase I (0.3 U/ml, the in vitro surrogate heparanase), plus insulin, heparin and bFGF for two days in serum free medium. Endothelial cell injury was evaluated by determining the number of live cells per culture and lactate dehydrogenase (LDH) release into medium expressed as percentage of control. RESULTS: A significant decrease in live cell number and increase in LDH release was found in endothelial cells treated with high glucose or heparinase I. Insulin and/or heparin and/or bFGF prevented these changes and thus protected cells from injury by high glucose or heparinase I. The protective ability of heparin and bFGF alone or in combination was more evident in cells damaged with heparinase I than high glucose. CONCLUSION: Endothelial cells injured by high glucose or heparinase I are protected by a combination of insulin, heparin and bFGF, although protection by heparin and/or bFGF was variable

    Defining key metabolic roles in osmotic adjustment and ROS homeostasis in the recretohalophyte Karelinia caspia under salt stress

    Get PDF
    The recretohalophyte Karelinia caspia is of forage and medical value and can remediate saline soils. We here assess the contribution of primary/secondary metabolism to osmotic adjustment and ROS homeostasis in Karelinia caspia under salt stress using multi‐omic approaches. Computerized phenomic assessments, tests for cellular osmotic changes and lipid peroxidation indicated that salt treatment had no detectable physical effect on K. caspia. Metabolomic analysis indicated that amino acids, saccharides, organic acids, polyamine, phenolic acids, and vitamins accumulated significantly with salt treatment. Transcriptomic assessment identified differentially expressed genes closely linked to the changes in above primary/secondary metabolites under salt stress. In particular, shifts in carbohydrate metabolism (TCA cycle, starch and sucrose metabolism, glycolysis) as well as arginine and proline metabolism were observed to maintain a low osmotic potential. Chlorogenic acid/vitamin E biosynthesis was also enhanced, which would aid in ROS scavenging in the response of K. caspia to salt. Overall, our findings define key changes in primary/secondary metabolism that are coordinated to modulate the osmotic balance and ROS homeostasis to contribute to the salt tolerance of K. caspia

    Seed removal on loess slopes in relation to runoff and sediment yield

    No full text
    Overland flow and sediment transport can carry away seeds at the soil surface and in the soil, cause a secondary seed dispersal event, lead to seed redistribution, and influence the spatial distribution of seedling renewal, which plays an important role in vegetation restoration and succession. The objectives of this study were to investigate the process of seed loss on loess slopes and its relationship to the yield of runoff and sediment, the effects of rainfall intensity, slope gradient and seed morphology on seed removal. Rainfall simulation experiments were carried out in 1 m(2) plots on 10 degrees, 15 degrees, 20 degrees and 25 degrees loess slopes for a 60-minute duration with intensities of 50 mm/h, 100 mm/h and 150 mm/h, respectively. A mixture of 75 seeds from 16 species on the Chinese hilly-gullied Loess Plateau had been placed in these plots, and we measured the number of seeds lost, the distance seeds displaced, the runoff rate and amount, and soil loss rate and amount. Results showed that the accumulated seed loss rates in the rainfall process were closely related to the corresponding sediment yield, and even more closely related to the runoff amount. The seed removal obviously increased with rainfall intensity but did not obviously change with slope gradient, and results varied among species. At 50 mm/h rainfall, there was almost no seed loss on the four slopes, but 30-45% of the seeds moved from their original position. However, 79.5% and 86.4% of the seeds were eroded at 100 mm/h and 150 mm/h, respectively. Of these, 46.9% and 20.4% of the seeds were displaced, and 32.6% and 66.0% of the seeds were lost. Total seed removal was also affected by the seed amount and position on slopes, species composition of the seeds, and slope length. It was suggested that seed removal during water erosion events can affect seed redistribution and, consequently, species composition and vegetation spatial distribution. (C) 2010 Elsevier B.V. All rights reserved

    Fine Mapping of the Mouse <i>Ath28</i> Locus Yields Three Atherosclerosis Modifying Sub-Regions

    No full text
    A mouse strain intercross between Apoe−/− AKR/J and DBA/2J mice identified three replicated atherosclerosis quantitative trait loci (QTLs). Our objective was to fine map mouse atherosclerosis modifier genes within a genomic region known to affect lesion development in apoE-deficient (Apoe−/−) mice. We dissected the Ath28 QTL on the distal end of chromosome 2 by breeding a panel of congenic strains and measuring aortic root lesion area in 16-week-old male and female mice fed regular laboratory diets. The parental congenic strain contained ~9.65 Mb of AKR/J DNA from chromosome 2 on the DBA/2J genetic background, which had lesions 55% and 47% smaller than female and male DBA/2J mice, respectively (p Ath28.1, Ath28.2, and Ath28.3, where the AKR/J alleles were atherosclerosis-protective for two regions and atherosclerosis-promoting for the other region. These results were replicated in both sexes, and in combined analysis after adjusting for sex. The congenic lines did not greatly impact total and HDL cholesterol levels or body weight. Bioinformatic analyses identified all coding and non-coding genes in the Ath28.1 sub-region, as well as strain sequence differences that may be impactful. Even within a <10 Mb region of the mouse genome, evidence supports the presence of at least three atherosclerosis modifier genes that differ between the AKR/J and DBA/2J mouse strains, supporting the polygenic nature of atherosclerosis susceptibility

    CD6 expression has no effect on atherosclerosis in apolipoprotein E-deficient mice

    No full text
    Abstract Objective To determine if deficiency of CD6, a cell surface protein on lymphocytes that alters natural antibody production, increases atherosclerosis in ApoE-deficient mice fed a chow or a western-type diet. Results We compared cholesterol levels, IgM, B1a cells, and aortic root lesion areas in ApoE-deficient vs. CD6/ApoE double deficient mice. Feeding the high-fat western type diet increased all parameters, except for B1a cell numbers decreased. Sex also had an effect on many parameters with males having increased body weights, higher high density lipoprotein cholesterol, higher B1a cells, but smaller atherosclerotic lesions if chow fed mice; however, this sex effect on atherosclerosis was absent in mice fed the western-type diet. CD6 deficiency had no effect on atherosclerosis in both male and female mice on either diet. Thus, loss of CD6 on lymphocytes did not lead to expected reductions in B1a cells and protective IgM levels, and in turn did not alter atherosclerosis in mice

    Optimization of the Waterbus Operation Plan Considering Carbon Emissions: The Case of Zhoushan City

    No full text
    Recently, as more people are concerned with the issues around environment protection, research about how to reduce carbon emissions has drawn increasing attention. Encouraging public transportation is an effective measure to reduce carbon emissions. However, overland public transportation does less to lower carbon because of the gradually increasing pressure of the urban road traffic. Therefore, the waterbus along the coast becomes a new direction of the urban public transport development. In order to optimize the operation plan of the waterbus, a bi-level model considering carbon emissions is proposed in this paper. In the upper-level model, a multiple objective model is established, which considers both the interests of the passengers and the operator while considering the carbon emissions. The lower-level model is a traffic model split by using a Nested Logit model. A NSGA-II (Non-dominated Sorting Genetic Algorithm-II) algorithm is proposed to solve the model. Finally, the city of Zhoushan is chosen as an example to prove the feasibility of the model and the algorithm. The result shows that the proposed model for waterbus operation optimization can efficiently reduce transportation carbon emissions and satisfy passenger demand at the same time

    Changes in cultured endothelial cell glycosaminoglycans under hyperglycemic conditions and the effect of insulin and heparin

    No full text
    Abstract Background Heparan sulfate proteoglycans (HSPGs) contain glycosaminoglycan (GAG) chains made primarily of heparan sulfate (HS). Hyperglycemia in diabetes leads to endothelial injury and nephropathy, retinopathy and atherosclerosis. Decreased HSPG may contribute to diabetic endothelial injury. Decreased tissue HS in diabetes has been reported, however, endothelial HS changes are poorly studied. Objective To determine total GAGs, including HS, in endothelium under hyperglycemic conditions and the protective effect of insulin and heparin. Methods Confluent primary porcine aortic endothelial cells (PAECs) were divided into control, glucose (30 mM), insulin (0.01 unit/ml) and glucose plus insulin treatment groups for 24, 48 and 72 hours. Additionally, PAECs were treated with glucose, heparin (0.5 μg/ml) and glucose plus heparin for 72 hours. GAGs were isolated from cells and medium. GAG concentrations were determined by the carbazole assay and agarose gel electrophoresis. Results GAGs were significantly increased only in control and glucose plus insulin groups at 72 versus 24 hours. Glucose decreased cell GAGs and increased medium GAGs, and insulin alone decreased cell GAGs at all times compared to control. In the glucose plus insulin group, cell GAGs were less than control at 24 hours, and greater than glucose or insulin alone at 48 and 72 hours while GAGs in medium were greater than control at all times and glucose at 72 hours. Heparin increased GAGs in glucose treated cells and medium. Conclusion High glucose and insulin alone reduces endothelial GAGs. In hyperglycemic conditions, heparin or insulin preserves GAGs which may protect cells from injury. Insulin is an effective diabetic therapy since it not only lowers blood glucose, but also protects endothelium.</p
    corecore