30 research outputs found

    Observation of superabsorption by correlated atoms

    Full text link
    Emission and absorption of light lie at the heart of light-matter interaction. Although the emission and absorption rates are regarded as intrinsic properties of atoms and molecules, various ways to modify these rates have been sought in critical applications such as quantum information processing, metrology and light-energy harvesting. One of the promising approaches is to utilize collective behavior of emitters as in superradiance. Although superradiance has been observed in diverse systems, its conceptual counterpart in absorption has never been realized. Here, we demonstrate superabsorption, enhanced cooperative absorption, by correlated atoms of phase-matched superposition state. By implementing an opposite-phase-interference idea on a superradiant state or equivalently a time-reversal process of superradiance, we realized the superabsorption with its absorption rate much faster than that of the ordinary ground-state absorption. The number of photons completely absorbed for a given time interval was measured to be proportional to the square of the number of atoms. Our approach, breaking the limitation of the conventional absorption, can help weak-signal sensing and advance efficient light-energy harvesting as well as light-matter quantum interfaces.Comment: 7 pages, 5 figure

    Periodic super-radiance in Er:YSO crystal

    Full text link
    We observed periodic optical pulses from an Er:YSO crystal during irradiating with an continuous-wave excitation laser. We refer to this new phenomenon as "periodic super-radiance". This periodicity can be understood qualitatively by a simple model, in which a cyclic process of a continuous supply of population inversion and a sudden burst of super-radiance is repeated. The excitation power dependences of peak interval and the pulse area can be interpreted with our simple model. In addition, the linewidth of super-radiance is much narrower than an inhomogeneous broadening in a crystal. This result suggests that only Er3+ ions in a specific environment are involved in super-radiance.Comment: 7 pages, 5 figure

    Radiological Significance of Ligamentum Flavum Hypertrophy in the Occurrence of Redundant Nerve Roots of Central Lumbar Spinal Stenosis

    Get PDF
    Objective: There were previous reports of redundant nerve roots (RNRs) focused on their clinical significance and pathogenesis. In this study, we investigated the significant radiologic findings that correlate with RNRs occurrence. These relations would provide an advanced clue for clinical significance and pathogenesis of RNRs. Methods: Retrospective research was performed with data from 126 patients who underwent surgery for central lumbar spinal stenosis (LSS). Finally, 106 patients with common denominators (inter-observer accuracy : 84%) were included on this study. We divided the patients into two groups by MRI, patients with RNRs and those with no RNRs (NRNRs). Comparative analyses were performed with clinical and radiologic parameters. Results: RNRs were found in 45 patients (42%) with central LSS. There were no statistically significant differences between the two groups in severity of symptoms. On the other hand, we found statistically significant differences in duration of symptom and number of level included (p<0.05). In the maximal stenotic level, ligamentum flavum (LF) thickness, LF cross-sectional area (CSA), dural sac CSA, and segmental angulation are significantly different in RNRs group compared to NRNRs group (p<0.05). Conclusion: RNRs patients showed clinically longer duration of symptoms and multiple levels included. We also confirmed that wide segmental angulation and LF hypertrophy play a major role of the development of RNRs in central LSS. Together, our results suggest that wide motion in long period contribute to LF hypertrophy, and it might be the key factor of RNRs formation in central LSS

    Large Quantum Anomalous Hall Effect in Spin-Orbit Proximitized Rhombohedral Graphene

    Full text link
    The quantum anomalous Hall effect (QAHE) is a robust topological phenomenon that features quantized Hall resistance at zero magnetic field. Here we report the observation of the QAHE in a rhombohedral pentalayer graphene/monolayer WS2 heterostructure. Distinct from all existing QAHE systems, this system has neither magnetic element nor moir\'e superlattice effect. The QAH states emerge at charge neutrality and feature Chern numbers C = +-5 at temperatures up to about 1.5 K. This large QAHE in our system arises from the synergy of the electron correlation effect in intrinsic flat bands of pentalayer graphene, the gate-tuning effect that breaks the layer/spin-degeneracy, and the proximity-induced Ising spin-orbit-coupling (SOC) effect that further lifts the valley-degeneracy. Our experiment demonstrates the great potential of crystalline two-dimensional materials for intertwined electron correlation and band topology physics, and points to engineering chiral Majorana edge states towards topological quantum computation

    A small-molecule protein-protein interaction inhibitor of PARP1 that targets its BRCT domain

    No full text
    10.1002/anie.201410678Angewandte Chemie - International Edition5482515-251

    GPS TEC Fluctuations in the Low and High Latitudes During the 2015 St. Patrick`s Day Storm

    No full text
    As a part of collaborative efforts to understand ionospheric irregularities, the Korea ionospheric scintillation sites (KISS) network has been built based on global positioning system (GPS) receivers with sampling rates higher than 1 Hz. We produce the rate of TEC index (ROTI) to represent GPS TEC fluctuations related to ionospheric irregularities. In the KISS network, two ground-based GPS sites at Kiruna (marker: KIRN; geographic: 67.9° N, 21.4° E; geomagnetic: 65.2° N) and Chuuk (marker: CHUK; geographic: 7.5° N, 151.9° E; geomagnetic: 0.4° N) were selected to evaluate the ROTI value for ionospheric irregularities during the occurrence of the 2015 St. Patrick’s Day storm. The KIRN ROTI values in the aurora region appear to be generally much higher than the CHUK ROTI values in the EIA region. The CHUK ROTI values increased to ~0.5 TECU/min around UT=13:00 (LT=23:00) on March 16 in the quiet geomagnetic condition. On March 17, 2015, CHUK ROTI values more than 1.0 TECU/min were measured between UT=9:00 and 12:00 (LT=19:00 and 22:00) during the first main phase of the St. Patrick’s Day storm. This may be due to ionospheric irregularities by increased pre-reversal enhancement (PRE) after sunset during the geomagnetic storm. Post-midnight, the CHUK ROTI showed two peaks of ~0.5 TECU/min and ~0.3 TECU/min near UT=15:00 (LT=01:00) and UT=18:00 (LT=04:00) at the second main phase. The KIRN site showed significant peaks of ROTI around geomagnetic latitude=63.3° N and MLT=15:40 on the same day. These can be explained by enhanced ionospheric irregularities in the auroral oval at the maximum of AE inde

    Realization of superabsorption by time reversal of superradiance

    No full text
    Emission and absorption of light lie at the heart of light–matter interaction1. Although emission and absorption rates are regarded as intrinsic properties of atoms and molecules, various ways to modify these rates have been sought in applications such as quantum information processing2, metrology3 and light-energy harvesting4. One promising approach is to utilize collective behaviour of emitters in the same way as in superradiance5. Although superradiance has been observed in diverse systems3,6–10, its conceptual counterpart in absorption has never been realized11 until now. Here we demonstrate enhanced cooperative absorption—superabsorption—by implementing a time-reversal process of superradiance. The observed superabsorption rate is much higher than that of ordinary absorption, with the number of absorbed photons scaling with the square of the number of atoms, exhibiting the cooperative nature of superabsorption. The present superabsorption—which performs beyond the limitations of conventional absorption—can facilitate weak-signal sensing1, light-energy harvesting11 and light–matter quantum interfaces2. © 2021, The Author(s), under exclusive licence to Springer Nature Limited.11Nsciescopu

    Assessment of Polar Ionospheric Observations by VIPIR/Dynasonde at Jang Bogo Station, Antarctica: Part 1—Ionospheric Densities

    No full text
    Vertical incidence pulsed ionospheric radar (VIPIR) has been operated to observe the polar ionosphere with Dynasonde analysis software at Jang Bogo Station (JBS), Antarctica, since 2017. The JBS-VIPIR-Dynasonde (JVD) provides ionospheric parameters such as the height profile of electron density with NmF2 and hmF2, the ion drift, and the ionospheric tilt in the bottomside ionosphere. The JBS (74.6°S, 164.2°E) is located in the polar cap, cusp, or auroral region depending on the geomagnetic activity and local time. In the present study, an initial assessment of JVD ionospheric densities is attempted by the comparison with GPS TEC measurements which are simultaneously obtained from the GPS receiver at JBS during the solar minimum period from 2017 to 2019. It is found that the JVD NmF2 and bottomside TEC (bTEC) show a generally good correlation with GPS TEC for geomagnetically quiet conditions. However, the bTEC seems to be less correlated with the GPS TEC with slightly larger spreads especially during the daytime and in summer, which seems to be associated with the characteristics of the polar ionosphere such as energetic particle precipitations and large density irregularities. It is also found that the Dynasonde analysis seems to show some limitations to handle these characteristics of the polar ionosphere and needs to be improved to produce more accurate ionospheric density profiles especially during disturbed conditions
    corecore