90 research outputs found

    Study on surface asperity flattening in cold quasi-static uniaxial planar compression by crystal plasticity finite element method

    Get PDF
    In order to study the surface asperity flattening in a quasi-static cold uniaxial planar compression, the experimental results of atomic force microscope and electron backscattered diffraction have been employed in a ratedependent crystal plasticity model to analyze this process. The simulation results show a good agreement with the experimental results: in this quasi-static deformation process, lubrication can hinder the surface asperity flattening process even under very low deformation rate. However, due to the limitation of the model and some parameters, the simulation results cannot predict all the properties in detail such as S orientation {123}and the maximum stress in sample compressed without lubrication. In addition, the experimental results show, with an increase in gauged reduction, the development of Taylor factor, and CSL boundaries show certain tendencies. Under the same gauged reduction, friction can increase the Taylor factor and Σ = 7

    Visualization Measurement of the Flame Temperature in a Power Station Using the Colorimetric Method

    Get PDF
    AbstractThis paper presents a study on the measurement of the temperature distribution in a power station based on an optical flame/temperature visualization system. This system operates upon the colorimetric principle combining advanced optical sensing and digital image processing techniques. The system was calibrated using a blackbody furnace as standard temperature source. Experimental results are obtained from a 300MW power station boiler. As the measurement height changed, the temperature captured by the system also changed. The maximum temperature occurs on the upper level of the burners. The temperature decreased when the load went down and tended to be stable when the load remained steady. Experimental results also reveal that this system is capable of online measurements of the temperature distribution in a combustion zone. This system can potentially be applied to many areas such as power generation, metallurgy or chemical engineering

    Effects of Na +

    Get PDF
    Fibrotic remodeling, characterized by fibroblast phenotype switching, is often associated with atrial fibrillation and heart failure. This study aimed to investigate the effects on electrotonic myofibroblast-myocyte (Mfb-M) coupling on cardiac myocytes excitability and repolarization of the voltage-gated sodium channels (VGSCs) and single mechanogated channels (MGCs) in human atrial Mfbs. Mathematical modeling was developed from a combination of (1) models of the human atrial myocyte (including the stretch activated ion channel current, ISAC) and Mfb and (2) our formulation of currents through VGSCs (INa_Mfb) and MGCs (IMGC_Mfb) based upon experimental findings. The effects of changes in the intercellular coupling conductance, the number of coupled Mfbs, and the basic cycle length on the myocyte action potential were simulated. The results demonstrated that the integration of ISAC, INa_Mfb, and IMGC_Mfb reduced the amplitude of the myocyte membrane potential (Vmax) and the action potential duration (APD), increased the depolarization of the resting myocyte membrane potential (Vrest), and made it easy to trigger spontaneous excitement in myocytes. For Mfbs, significant electrotonic depolarizations were exhibited with the addition of INa_Mfb and IMGC_Mfb. Our results indicated that ISAC, INa_Mfb, and IMGC_Mfb significantly influenced myocytes and Mfbs properties and should be considered in future cardiac pathological mathematical modeling

    Optimising two-stage vacuum heat treatment for a high-strength micro-alloyed steel in railway spring clip application: impact on microstructure and mechanical performance

    Get PDF
    The heat treatment process is a vital step for manufacturing high-speed railway spring fasteners. In this study, orthogonal experiments were carried out to obtain reliable optimised heat treatment parameters through a streamlined number of experiments. Results revealed that a better comprehensive mechanical performance could be obtained under the following combination of heat treatment parameters: quenching temperature of 850 °C, holding time of 35 min, medium of 12% polyalkylene glycol (PAG) aqueous solution, tempering temperature of 460 °C, and holding time of 60 min. As one of the most important testing criteria, fatigue performance would be improved with increasing strength. Additionally, a high ratio of martensite to ferrite is proven to improve the fatigue limit more significantly. After this heat treatment process, the metallographic microstructure and mechanical properties satisfy the technical requirements for the high-speed railway practical operation. These findings provide a valuable reference for the practical forming process of spring fasteners

    Ex situ analysis of high-strength quenched and micro-alloyed steel during austenitising bending process: numerical simulation and experimental investigation

    Get PDF
    This paper compares the microstructure and mechanical evolution in a high-strength quenched and micro-alloyed steel during the austenitising bending process. Simulation results indicated a new finding that the stress neutral layer (SNL) tends to move to the tension zone during straining. The hardness gradient detected from the centre to compression/tension zones was resulted from comprehensive factors: First of all, the location of SNL revealed a prominent impact on strength. Second, the dislocation accumulation would be responsible for the hardness gradient on the surfaces. In addition, the overall strength decrease during straining was mainly ascribed to integrated effects of dynamic recovery (DRV) and dynamic recrystallisation (DRX). Apart from that, overall smaller martensite packet size and coarser prior austenite grains resulted in the increased hardness value at a lower bending degree. Also, the high consistency between experimental and simulation results is instructive for the practical forming process of railway spring fasteners

    Cellular immunotherapy as maintenance therapy prolongs the survival of the patients with small cell lung cancer in extensive stage

    Get PDF
    AbstractBackgroundSmall cell lung cancer (SCLC) is the most devastating type of human lung cancer. Patients usually present with disseminated disease to many organs (extensive stage). This study was to investigate the efficacy and safety of cellular immunotherapy (CIT) with autologous natural killer (NK), γδT, and cytokine-induced killer (CIK) cells as maintenance therapy for extensive-stage SCLC (ES-SCLC) patients.MethodsA pilot prospective cohort study was conducted with ES-SCLC patients who had responded to initial chemotherapy. Patients received either CIT as maintenance therapy (CIT group), or no treatment (control group). Progression-free survival (PFS), overall survival (OS), and adverse effects were compared.ResultsForty-nine patients were recruited in this study, with 19 patients in the CIT group and 30 patients in the control group. The patient characteristics of the 2 groups were comparable except for age, as patients in the CIT group were older than those in the control group (P < 0.05). PFS in the CIT group was superior to the control group (5 vs. 3.1 months, P = 0.020; HR, 0.489, 95% CI, 0.264–0.909, P = 0.024). OS of the CIT group was also longer than that of the control group (13.3 vs. 8.2 months, P = 0.044; HR, 0.528, 95% CI, 0.280–0.996, P = 0.048, respectively). No significant adverse reactions occurred in patients undergoing CIT.ConclusionsCIT maintenance therapy in ES-SCLC prolonged survival with only minimal side effects. Integrating CIT into the current treatment may be a novel strategy for ES-SCLC patients, although further multi-center randomized trials are needed

    Searching for the nano-Hertz stochastic gravitational wave background with the Chinese Pulsar Timing Array Data Release I

    Full text link
    Observing and timing a group of millisecond pulsars (MSPs) with high rotational stability enables the direct detection of gravitational waves (GWs). The GW signals can be identified from the spatial correlations encoded in the times-of-arrival of widely spaced pulsar-pairs. The Chinese Pulsar Timing Array (CPTA) is a collaboration aiming at the direct GW detection with observations carried out using Chinese radio telescopes. This short article serves as a `table of contents' for a forthcoming series of papers related to the CPTA Data Release 1 (CPTA DR1) which uses observations from the Five-hundred-meter Aperture Spherical radio Telescope (FAST). Here, after summarizing the time span and accuracy of CPTA DR1, we report the key results of our statistical inference finding a correlated signal with amplitude \log A_{\rm c}= -14.4 \,^{+1.0}_{-2.8} for spectral index in the range of α∈[−1.8,1.5]\alpha\in [-1.8, 1.5] assuming a GW background (GWB) induced quadrupolar correlation. The search for the Hellings-Downs (HD) correlation curve is also presented, where some evidence for the HD correlation has been found that a 4.6-σ\sigma statistical significance is achieved using the discrete frequency method around the frequency of 14 nHz. We expect that the future International Pulsar Timing Array data analysis and the next CPTA data release will be more sensitive to the nHz GWB, which could verify the current results.Comment: 18 pages, 6 figures, submitted to "Research in astronomy and astrophysics" 22nd March 202
    • …
    corecore