50 research outputs found

    Brake or Step On the Gas? Empirical Analyses of Credit Effects on Individual Consumption

    Get PDF
    Understanding the effects of credit on consumption is crucial for guiding users’ consumption behavior, designing financial marketing strategies, and identifying credit\u27s value in stimulating the economy. Whereas several studies have endeavored on this issue, most simply utilize observations of a single credit channel and/or focus on an overall effect without considering the potentially heterogeneous short-term and long-term consumption changes. This study, leveraging a quasi-experimental design with high-resolution transaction data, examines how people respond to credit in both short- and long-term periods. Results show that credit users’ consumption amount significantly expand by 51.74% after getting access to credit in the short term. However, they ultimately cut their consumption by 4.02% to cope with financial constraints in the long term. We also reveal and quantify the spillover effects of credit on consumption with savings channels. We draw on regulatory focus theory to rationalize the changes on consumers’ consumption behavior after credit activation

    Comparison of Intra-Arterial Chemotherapy Efficacy Delivered Through the Ophthalmic Artery or External Carotid Artery in a Cohort of Retinoblastoma Patients

    Get PDF
    Purpose: To evaluate the efficacy of an external carotid artery (ECA) alternative route in intra-arterial chemotherapy (IAC) for treatment of retinoblastoma.Methods: In this retrospective, single-centre, case-control study, 98 retinoblastoma patients who received successful IAC were included. The drug delivery routes were the primary ophthalmic artery (OA) route and the ECA route when OA catheterization was not feasible.Results: A total of 337 successful IAC procedures were performed in our study, of which 32 (9.5%) procedures were performed through the ECA route. Eighteen eyes (18.4%) accepted at least one IAC through branches of the ECA. Statistical analysis showed that there was no significant difference in ocular clinical results (enucleation, death, recurrence and event-free) between the ECA and OA routes. No significant association was found between the route of drug delivery and the ocular survival time (p = 0.69). The use of ECA catheterization in at least one IAC cycle was not a predictor of enucleation (HR: 1.58; 95% CI: 0.56–4.46, p = 0.39). The increasing number of procedures through the ECA route did not increase the risk of enucleation (HR: 1.64; 95% CI: 0.42–6.39, p = 0.48).Conclusion: The ECA alternative route did not affect the efficacy of IAC in retinoblastoma. When the standard OA approach is not feasible, ECA system catheterization should be considered

    Observations of the Kuroshio's barotropic and baroclinic responses to basin-wide wind forcing

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 116 (2011): C04011, doi:10.1029/2010JC006863.Observations show that the Kuroshio in the East China Sea (ECS-Kuroshio) responds to the large-scale wind stress curl field at two time scales. It is argued that these two responses are related to barotropic and baroclinic modes that reach the ECS via different waveguides. Variability in the ECS-Kuroshio is assessed by comparing satellite altimetry, historical hydrography, and the Pacific Decadal Oscillation (PDO) index with the latter used as a proxy for the large-scale wind stress curl forcing. Sea level difference across the ECS-Kuroshio is positively correlated with PDO at zero lag and negatively correlated at 7 year lag. In contrast, pycnocline steepness and PDO are uncorrelated at zero lag and negatively correlated at 7 year lag. These signals in the ECS-Kuroshio, considered together with wind stress curl anomalies in the open ocean, are consistent with a barotropic response to the wind at zero lag. The barotropic response is likely forced in the central North Pacific by wind stress curl anomalies of opposite sign, one of which is centered at ECS latitudes (∼27°N) while the other sits further north. This suggests that, in general, the absolute transport at a given latitude is not simply that predicted by the Sverdrup balance along the latitude. This is a consequence of waveguides that can steer the barotropic mode across latitude lines. In contrast, the signals that lag PDO by 7 years are consistent with a baroclinic mode, which represents the ocean's time-integrated response to the wind stress curl along a single latitude band between 24°N and 27°N.M.A. was supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Ocean and Climate Change Institute. Further support was provided to M.A., Y.‐O.K., and J.Y. by NSF under grant OCE‐1028739

    DeePMD-kit v2: A software package for Deep Potential models

    Full text link
    DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics simulations using machine learning potentials (MLP) known as Deep Potential (DP) models. This package, which was released in 2017, has been widely used in the fields of physics, chemistry, biology, and material science for studying atomistic systems. The current version of DeePMD-kit offers numerous advanced features such as DeepPot-SE, attention-based and hybrid descriptors, the ability to fit tensile properties, type embedding, model deviation, Deep Potential - Range Correction (DPRc), Deep Potential Long Range (DPLR), GPU support for customized operators, model compression, non-von Neumann molecular dynamics (NVNMD), and improved usability, including documentation, compiled binary packages, graphical user interfaces (GUI), and application programming interfaces (API). This article presents an overview of the current major version of the DeePMD-kit package, highlighting its features and technical details. Additionally, the article benchmarks the accuracy and efficiency of different models and discusses ongoing developments.Comment: 51 pages, 2 figure

    Leukocyte Telomeric G-Tail Length Shortening Is Associated with Esophageal Cancer Recurrence

    No full text
    Despite significant advances in therapeutics for esophageal cancer (ESC) in the past decade, it remains the sixth most fatal malignancy, with a poor 5-year survival rate (approximately 10%). There is an urgent need to improve the timely diagnosis to aid the prediction of the therapeutic response and prognosis of patients with ESC. The telomeric G-tail plays an important role in the chromosome protection. However, aging and age-related diseases lead to its shortening. Therefore, the G-tail length has been proposed as a novel potential biomarker. In the present study, to examine the possibility of G-tail shortening in patients with ESC, we measured the leukocyte telomere length (LTL) and the G-tail length using a hybridization protection assay in 147 patients with ESC and 170 age-matched healthy controls. We found that the G-tail length in patients with ESC was shorter than that in the healthy controls (p = 0.02), while the LTL shortening was not correlated with the ESC incidence and recurrence. Our results suggest that the G-tail length reflects the physiological status of patients with ESC and is a promising biomarker for the diagnosis and prognosis of ESC

    白血球由来テロメアG-Tail長を指標とした新規食道がんバイオマーカーの開発

    No full text
    博士(薬学)Doctor of Philosophy in Pharmaceutical Science広島大学Hiroshima Universit

    Atomistic Insights into the Oxidation of Flat and Stepped Platinum Surfaces Using Large-Scale Machine Learning Potential-based Grand-Canonical Monte Carlo

    No full text
    Understanding catalyst surface structure changes under reactive conditions has become an important topic with the increasing interest in operando measurement and modelling. In this work, we develop a workflow to build machine learning potentials (MLPs) for simulating complicated chemical systems with large spatial and time scales, in which the committee model strategy equips the MLP with uncertainty estimation, enabling active learning protocol. The methods are applied to constructing PtOx MLP based on explored configurations from bulk oxides to amorphous oxidised surfaces, which cover most ordered high-oxygen-coverage platinum surfaces within an accessible energy range. This MLP is used to perform large-scale grand canonical Monte Carlo simulations to track detailed structure changes during oxidations of flat and stepped Pt surfaces, which is normally inaccessible to costly ab initio calculations. These structural evolution trajectories reveal the stages of surface oxidation without laboriously manual construction of surface models. We identify the building blocks of oxide formation and elucidate the surface oxide formation mechanism on Pt surfaces. The insightful interpretations of the oxide formation are likely to be general for other metal surfaces. We demonstrate that these large-scale simulations would be a powerful tool to investigate realistic structures and the formation mechanisms of complicated systems
    corecore