114,061 research outputs found

    A compiled catalog of rotation measures of radio point sources

    Full text link
    We compiled a catalog of Faraday rotation measures (RMs) for 4553 extragalactic radio point sources ublished in literature. These RMs were derived from multi-frequency polarization observations. The RM data are compared to those in the NRAO VLA Sky Survey (NVSS) RM catalog. We reveal a systematic uncertainty of about 10.0±1.510.0 \pm 1.5\,rad~m−2^{-2} in the NVSS RM catalog. The Galactic foreground RM is calculated through a weighted averaging method by using the compiled RM catalog together with the NVSS RM catalog, with careful consideration of uncertainties in the RM data. The data from the catalog and the interface for the Galactic foreground RM calculations are publicly available on the webpage: http://zmtt.bao.ac.cn/RM/.Comment: 17 pages, 8 figures. Published already, at http://www.raa-journal.org/raa/index.php/raa/article/view/171

    Nonequilibrium electron transport in strongly correlated molecular junctions

    Full text link
    We investigate models of molecular junctions which constitute minimal Hamiltonians to account for zero-bias-anomaly and the satellite features of inelastic transport by molecular phonons. Through nonlinear transport calculations with the imaginary-time nonequilibrium formalism, a HOMO-LUMO model with Anderson-Holstein interaction is shown to produce co-tunneling conductance peak in the vicinity of Kondo resonance which is mediated by a re-emergent many-body resonance assisted by phonon excitations at bias equal to the phonon frequency. Destruction of the resonance leads to negative-differential-resistance in the sequential tunneling regime

    Chemical control of orbital polarization in artificially structured transition-metal oxides: La2NiXO6 (X=B, Al, Ga, In) from first principles

    Full text link
    The application of modern layer-by-layer growth techniques to transition-metal oxide materials raises the possibility of creating new classes of materials with rationally designed correlated electron properties. An important step toward this goal is the demonstration that electronic structure can be controlled by atomic composition. In compounds with partially occupied transition-metal d shells, one important aspect of the electronic structure is the relative occupancy of different d orbitals. Previous work has established that strain and quantum confinement can be used to influence orbital occupancy. In this paper we demonstrate a different modality for orbital control in transition-metal oxide heterostructures, using density-functional band calculations supplemented by a tight-binding analysis to show that the choice of nontransition-metal counterion X in transition-metal oxide heterostructures composed of alternating LaNiO3 and LaXO3 units strongly affects orbital occupancy, changing the magnitude and in some cases the sign of the orbital polarization
    • …
    corecore