11 research outputs found

    High-speed ultrasound imaging in dense suspensions reveals impact-activated solidification due to dynamic shear jamming

    Full text link
    A remarkable property of dense suspensions is that they can transform from liquid-like at rest to solid-like under sudden impact. Previous work showed that this impact-induced solidification involves rapidly moving jamming fronts; however, details of this process have remained unresolved. Here we use high-speed ultrasound imaging to probe non-invasively how the interior of a dense suspension responds to impact. Measuring the speed of sound we demonstrate that the solidification proceeds without a detectable increase in packing fraction, and imaging the evolving flow field we find that the shear intensity is maximized right at the jamming front. Taken together, this provides direct experimental evidence for jamming by shear, rather than densification, as driving the transformation to solid-like behavior. Based on these findings we propose a new model to explain the anisotropy in the propagation speed of the fronts and delineate the onset conditions for dynamic shear jamming in suspensions.Comment: 9 pages, 3 figure

    Dynamic shear jamming in dense granular suspensions under extension

    Full text link
    Unlike dry granular materials, a dense granular suspension like cornstarch in water can strongly resist extensional flows. At low extension rates, such a suspension behaves like a viscous liquid, but rapid extension results in a response where stresses far exceed the predictions of lubrication hydrodynamics and capillarity. To understand this remarkable mechanical response, we experimentally measure the normal force imparted by a large bulk of the suspension on a plate moving vertically upward at a controlled velocity. We observe that above a velocity threshold, the peak force increases by orders of magnitude. Using fast ultrasound imaging we map out the local velocity profiles inside the suspension which reveal the formation of a growing jammed region under rapid extension. This region interacts with the rigid boundaries of the container through strong velocity gradients, suggesting a direct connection to the recently proposed shear-jamming mechanism.Comment: Accepted for publication in Phys. Rev.

    Dataset for Shear fronts in shear-thickening suspensions

    No full text
    This dataset contains the data which are used for generating Fig.1 to Fig.4 in the reearch paper below. Data is given in separate Excel files, with seperate worksheets for the subfigures. The dataset supports the publication: Endao Han, Matthieu Wyart, Ivo Peters and Heinrich Jaeger (2018) &#39;Shear fronts in shear-thickening suspensions&#39; in Physical Review Fluids</span
    corecore