13 research outputs found

    Rigidity-Tunable Materials for Soft Engineering Systems

    No full text
    Engineering systems that leverage the flexibility and softness of soft materials have been fostering revolutionary progress and broad interest across various applications. The inherently flexible mechanical properties of these materials lay the groundwork for engineering systems that can adapt comparably to biological organisms, enabling them to adjust to unpredictable environments effectively. However, alongside the positive benefits of softness, these systems face challenges such as low durability, continuous energy demands, and compromised task performance due to the inherently low stiffness of soft materials. These limitations pose significant obstacles to the practical impact of soft engineering systems in the real world beyond innovative concepts. This review presents a strategy that employs materials with variable stiffness to balance adaptability advantages with the challenge of low rigidity. The developments are summarized in materials capable of stiffness modulation alongside their applications in electronics, robotics, and biomedical fields. This focus on stiffness modulation at the material unit level is a critical step toward enabling the practical application of soft engineering systems in real-world scenarios. Soft engineering systems have seen drastic advancements in robotics, electronics, and biomedical applications. However, these systems face challenges due to their inherent low stiffness. Herein, we discuss strategies utilizing stiffness-tunable materials to achieve the advantage of both rigid and soft materials. This approach offers the opportunity to advance soft engineering, enabling it to mimic the remarkable adaptability observed in biological systems.image (c) 2024 WILEY-VCH GmbHY

    Nanoscale Soft Wetting Observed in Co/Sapphire during Pulsed Laser Irradiation

    No full text
    Liquid drops on deformable soft substrates exhibit quite complicated wetting behavior as compared to those on rigid solid substrates. We report on a soft wetting behavior of Co nanoparticles (NPs) on a sapphire substrate during pulsed laser-induced dewetting (PLID). Co NPs produced by PLID wetted the sapphire substrate with a contact angle near 70°, which is in contrast to typical dewetting behavior of metal thin films exhibiting contact angles greater than 90°. In addition, a nanoscale γ-Al2O3 wetting ridge about 15 nm in size and a thin amorphous Al2O3 interlayer were observed around and beneath the Co NP, respectively. The observed soft wetting behavior strongly indicates that the sapphire substrate became soft and deformable during PLID. Moreover, the soft wetting was augmented under PLID in air due to the formation of a CoO shell, resulting in a smaller contact angle near 30°

    Nanoscale Soft Wetting Observed in Co/Sapphire during Pulsed Laser Irradiation

    No full text
    Liquid drops on deformable soft substrates exhibit quite complicated wetting behavior as compared to those on rigid solid substrates. We report on a soft wetting behavior of Co nanoparticles (NPs) on a sapphire substrate during pulsed laser-induced dewetting (PLID). Co NPs produced by PLID wetted the sapphire substrate with a contact angle near 70°, which is in contrast to typical dewetting behavior of metal thin films exhibiting contact angles greater than 90°. In addition, a nanoscale γ-Al2O3 wetting ridge about 15 nm in size and a thin amorphous Al2O3 interlayer were observed around and beneath the Co NP, respectively. The observed soft wetting behavior strongly indicates that the sapphire substrate became soft and deformable during PLID. Moreover, the soft wetting was augmented under PLID in air due to the formation of a CoO shell, resulting in a smaller contact angle near 30°

    Highly Efficient Reductive Catalytic Fractionation of Lignocellulosic Biomass over Extremely Low-Loaded Pd Catalysts

    No full text
    The reductive catalytic fractionation (RCF) of lignocellulosic and herbaceous biomass over heterogeneous catalysts has been demonstrated to recover high-yield phenolic monomers and holocellulose-rich solids effectively, and these products could be further used to produce value-added chemicals and second-generation biofuel. Catalyst selection plays a critical role in the performance of the RCF process, and noble metal catalysts (e.g., Pt, Pd, and Ru) with a high loading of 5 wt % have been extensively used to obtain high-yield phenolic monomers and delignified holocellulose-rich solids. In this study, we demonstrated that the RCF of biomass over extremely low Pd loaded on N-doped carbon (CNx) support catalysts could produce phenolic monomers at approximately theoretical maximum yield and presented high holocellulose-rich solid recovery. When birch wood was converted over the catalyst with 0.25 wt % Pd loaded on CNx (Pd0.25/CNx) at 250 ??C and an initial H2 pressure of 3.0 MPa for 3 h, a lignin-derived phenolic monomer carbon yield and highly delignified holocellulose recovery of 52.7 C % and 84.2 wt %, respectively, were achieved. The Pd0.25/CNx catalyst contained both ultrasmall Pd nanoclusters and single Pd atoms, which were stabilized on the N-functionalized carbon support. The highly activated hydrogenolysis and double-bond saturation that occurred over the Pd0.25/CNx catalyst dominantly produced 4-n-propyl guaiacol/syringol. In contrast, 4-n-propanol guaiacol/syringol with residual ???OH groups was the major species obtained over the typical 5 wt % Pd/activated carbon catalyst. The plausible reaction pathways for the production of different types of phenolic monomers were discussed using density functional theory calculations. The excellent RCF performance of the Pd0.25/CNx catalyst was demonstrated using other types of biomass, such as oak, pine, and miscanthus. The successful use of extremely low-Pd-loaded catalysts is advantageous for implementing economically viable RCF techniques

    Unleashing the Potential of Sodium-Ion Batteries: Current State and Future Directions for Sustainable Energy Storage

    No full text
    Rechargeable sodium-ion batteries (SIBs) are emerging as a viable alternative to lithium-ion battery (LIB) technology, as their raw materials are economical, geographically abundant (unlike lithium), and less toxic. The matured LIB technology contributes significantly to digital civilization, from mobile electronic devices to zero electric-vehicle emissions. However, with the increasing reliance on renewable energy sources and the anticipated integration of high-energy-density batteries into the grid, concerns have arisen regarding the sustainability of lithium due to its limited availability and consequent price escalations. In this context, SIBs have gained attention as a potential energy storage alternative, benefiting from the abundance of sodium and sharing electrochemical characteristics similar to LIBs. Furthermore, high-entropy chemistry has emerged as a new paradigm, promising to enhance energy density and accelerate advancements in battery technology to meet the growing energy demands. This review uncovers the fundamentals, current progress, and the views on the future of SIB technologies, with a discussion focused on the design of novel materials. The crucial factors, such as morphology, crystal defects, and doping, that can tune electrochemistry, which should inspire young researchers in battery technology to identify and work on challenging research problems, are also reviewed

    New Cost‐Effective Halide Solid Electrolytes for All‐Solid‐State Batteries: Mechanochemically Prepared Fe 3+

    No full text
    Owing to the combined advantages of sulfide and oxide solid electrolytes (SEs), that is, mechanical sinterability and excellent (electro)chemical stability, recently emerging halide SEs such as Li3YCl6 are considered to be a game changer for the development of all-solid-state batteries. However, the use of expensive central metals hinders their practical applicability. Herein, a new halide superionic conductors are reported that are free of rare-earth metals: hexagonal close-packed (hcp) Li2ZrCl6 and Fe3+-substituted Li2ZrCl6, derived via a mechanochemical method. Conventional heat treatment yields cubic close-packed monoclinic Li2ZrCl6 with a low Li+ conductivity of 5.7 × 10−6 S cm−1 at 30 °C. In contrast, hcp Li2ZrCl6 with a high Li+ conductivity of 4.0 × 10−4 S cm−1 is derived via ball-milling. More importantly, the aliovalent substitution of Li2ZrCl6 with Fe3+, which is probed by complementary analyses using X-ray diffraction, pair distribution function, X-ray absorption spectroscopy, and Raman spectroscopy measurements, drastically enhances the Li+ conductivity up to ≈1 mS cm−1 for Li2.25Zr0.75Fe0.25Cl6. The superior interfacial stability when using Li2+xZr1−xFexCl6, as compared to that when using conventional Li6PS5Cl, is proved. Furthermore, an excellent electrochemical performance of the all-solid-state batteries is achieved via the combination of Li2ZrCl6 and single-crystalline LiNi0.88Co0.11Al0.01O2. © 2021 Wiley-VCH GmbH1

    Nature's Blueprint in Bioinspired Materials for Robotics

    No full text
    Soft robotics, an emerging field that focuses on the development of robots utilizing soft, flexible, and deformable materials, is revolutionizing traditional robotics (reliant on rigid materials and motors) and broadening its range of applications and potential uses. In addition, by emulating the structure, function, and characteristics of biological systems, bioinspired materials are facilitating significant progress in a diverse array of soft robotic applications. This review offers an overview of bioinspired materials employed in soft robotics, exploring their potential applications, challenges, and future research directions. For an intuitive understanding, soft robots based on the primary abilities required and the habitats (terrestrial, aquatic, aerial) of the animals and plants they mimic are categorized. Furthermore, real-world applications of developed soft robots in everyday human life are presented. The novel category classification and comprehensive analysis presented in this review provide insights into the development of soft robotic systems with the potential to transform various industries and enhance quality of life.Y

    Tailoring Solution-Processable Li Argyrodites Li6+xP1-xMxS5I (M = Ge, Sn) and Their Microstructural Evolution Revealed by Cryo-TEM for All-Solid-State Batteries

    No full text
    Owing to their high Li+ conductivities, mechanical sinterability, and solution processability, sulfide Li argyrodites have attracted much attention as enablers in the development of high-performance all-solid-state batteries with practicability. However, solution-processable Li argyrodites have been developed only for a composition of Li6PS5X (X = Cl, Br, I) with insufficiently high Li+ conductivities (similar to 10(-4) S cm(-1)). Herein, we report the highest Li+ conductivity of 0.54 mS cm(-1) at 30 degrees C (Li6.5P0.5Ge0.5S5I) for solution-processable iodine-based Li argyrodites. A comparative investigation of three iodine-based argyrodites of unsubstituted and Ge- and Sn-substituted solution-processed Li6PS5I with varied heat-treatment temperature elucidates the effect of microstructural evolution on Li+ conductivity. Notably, local nanostructures consisting of argyrodite nanocrystallites in solution-processed Li6.5P0.5Ge0.5S5I have been directly captured by cryogenic transmission electron microscopy, which is a first for sulfide solid electrolyte materials. Specifically, the promising electrochemical performances of all-solid-state batteries at 30 degrees C employing LiCoO2 electrodes tailored by the infiltration of Li6.5P0.5Ge0.5S5I-ethanol solutions are successfully demonstrated

    Synthesis of Monocarboxylic Acids via Direct CO2 Conversion over Ni-Zn Intermetallic Catalysts

    No full text
    The direct conversion of CO2 to methane, gasoline-to-diesel range fuels, methanol, and light olefins using sustainable hydrogen sources is considered a promising approach for mitigating global warming. Nevertheless, the direct conversion of CO2 to high value-added chemicals, such as acetic acid and propionic acid (AA and PA, respectively), has not been explored to date. Herein, we report a Ni-Zn intermetallic/Zn-rich NixZnyO catalyst that directly converted CO2 to AA and PA with an overall selectivity of 77.1% at a CO2 conversion of 13.4% at 325 degrees C. The surface restructuring of the ZnO and NiO phases during calcination and subsequent reduction led to the formation of a Ni-Zn intermetallic on the Zn-rich NixZnyO phase. Surface-adsorbed (*CHx)(n) species were formed via the reverse water gas shift reaction and subsequent CO hydrogenation. Afterward, monocarboxylic acids were produced via the direct insertion of CO2 into the (*CHx)(n) species and subsequent hydrogenation. The synthesis of monocarboxylic acid was highly stable up to 216 h on-stream over the Ni-Zn intermetallic catalyst, and the catalyst maintained its phase structure and morphology during long-term CO2 hydrogenation. The high selectivity toward monocarboxylic acids and high stability of the Ni-Zn intermetallic demonstrated its high potential for the conversion of CO2 into value-added chemicals

    MoO<sub>3</sub>@MoS<sub>2</sub> Core-Shell Structured Hybrid Anode Materials for Lithium-Ion Batteries

    No full text
    We explore a phase engineering strategy to improve the electrochemical performance of transition metal sulfides (TMSs) in anode materials for lithium-ion batteries (LIBs). A one-pot hydrothermal approach has been employed to synthesize MoS2 nanostructures. MoS2 and MoO3 phases can be readily controlled by straightforward calcination in the (200–300) °C temperature range. An optimized temperature of 250 °C yields a phase-engineered MoO3@MoS2 hybrid, while 200 and 300 °C produce single MoS2 and MoO3 phases. When tested in LIBs anode, the optimized MoO3@MoS2 hybrid outperforms the pristine MoS2 and MoO3 counterparts. With above 99% Coulombic efficiency (CE), the hybrid anode retains its capacity of 564 mAh g−1 after 100 cycles, and maintains a capacity of 278 mAh g−1 at 700 mA g−1 current density. These favorable characteristics are attributed to the formation of MoO3 passivation surface layer on MoS2 and reactive interfaces between the two phases, which facilitate the Li-ion insertion/extraction, successively improving MoO3@MoS2 anode performance
    corecore