31 research outputs found

    HCGMNET: A Hierarchical Change Guiding Map Network For Change Detection

    Full text link
    Very-high-resolution (VHR) remote sensing (RS) image change detection (CD) has been a challenging task for its very rich spatial information and sample imbalance problem. In this paper, we have proposed a hierarchical change guiding map network (HCGMNet) for change detection. The model uses hierarchical convolution operations to extract multiscale features, continuously merges multi-scale features layer by layer to improve the expression of global and local information, and guides the model to gradually refine edge features and comprehensive performance by a change guide module (CGM), which is a self-attention with changing guide map. Extensive experiments on two CD datasets show that the proposed HCGMNet architecture achieves better CD performance than existing state-of-the-art (SOTA) CD methods

    DeepCL: Deep Change Feature Learning on Remote Sensing Images in the Metric Space

    Full text link
    Change detection (CD) is an important yet challenging task in the Earth observation field for monitoring Earth surface dynamics. The advent of deep learning techniques has recently propelled automatic CD into a technological revolution. Nevertheless, deep learning-based CD methods are still plagued by two primary issues: 1) insufficient temporal relationship modeling and 2) pseudo-change misclassification. To address these issues, we complement the strong temporal modeling ability of metric learning with the prominent fitting ability of segmentation and propose a deep change feature learning (DeepCL) framework for robust and explainable CD. Firstly, we designed a hard sample-aware contrastive loss, which reweights the importance of hard and simple samples. This loss allows for explicit modeling of the temporal correlation between bi-temporal remote sensing images. Furthermore, the modeled temporal relations are utilized as knowledge prior to guide the segmentation process for detecting change regions. The DeepCL framework is thoroughly evaluated both theoretically and experimentally, demonstrating its superior feature discriminability, resilience against pseudo changes, and adaptability to a variety of CD algorithms. Extensive comparative experiments substantiate the quantitative and qualitative superiority of DeepCL over state-of-the-art CD approaches.Comment: 12 pages,7 figures, submitted to IEEE Transactions on Image Processin

    Transportation Density Reduction Caused by City Lockdowns Across the World during the COVID-19 Epidemic: From the View of High-resolution Remote Sensing Imagery

    Full text link
    As the COVID-19 epidemic began to worsen in the first months of 2020, stringent lockdown policies were implemented in numerous cities throughout the world to control human transmission and mitigate its spread. Although transportation density reduction inside the city was felt subjectively, there has thus far been no objective and quantitative study of its variation to reflect the intracity population flows and their corresponding relationship with lockdown policy stringency from the view of remote sensing images with the high resolution under 1m. Accordingly, we here provide a quantitative investigation of the transportation density reduction before and after lockdown was implemented in six epicenter cities (Wuhan, Milan, Madrid, Paris, New York, and London) around the world during the COVID-19 epidemic, which is accomplished by extracting vehicles from the multi-temporal high-resolution remote sensing images. A novel vehicle detection model combining unsupervised vehicle candidate extraction and deep learning identification was specifically proposed for the images with the resolution of 0.5m. Our results indicate that transportation densities were reduced by an average of approximately 50% (and as much as 75.96%) in these six cities following lockdown. The influences on transportation density reduction rates are also highly correlated with policy stringency, with an R^2 value exceeding 0.83. Even within a specific city, the transportation density changes differed and tended to be distributed in accordance with the city's land-use patterns. Considering that public transportation was mostly reduced or even forbidden, our results indicate that city lockdown policies are effective at limiting human transmission within cities.Comment: 14 pages, 7 figures, submitted to IEEE JSTAR

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    HANet: A Hierarchical Attention Network for Change Detection With Bitemporal Very-High-Resolution Remote Sensing Images

    No full text
    Benefiting from the developments in deep learning technology, deep-learning-based algorithms employing automatic feature extraction have achieved remarkable performance on the change detection (CD) task. However, the performance of existing deep-learning-based CD methods is hindered by the imbalance between changed and unchanged pixels. To tackle this problem, a progressive foreground-balanced sampling strategy on the basis of not adding change information is proposed in this article to help the model accurately learn the features of the changed pixels during the early training process and thereby improve detection performance. Furthermore, we design a discriminative Siamese network, hierarchical attention network (HANet), which can integrate multiscale features and refine detailed features. The main part of HANet is the HAN module, which is a lightweight and effective self-attention mechanism. Extensive experiments and ablation studies on two CD datasets with extremely unbalanced labels validate the effectiveness and efficiency of the proposed method

    Recyclable soft photonic crystal film with overall improved circularly polarized luminescence

    No full text
    Abstract Existing circularly polarized luminescence materials can hardly satisfy the requirements of both large luminescence dissymmetry factor and high luminescent quantum yield, which hinders their practical applications. Here, we present a soft photonic crystal film embedded with chiral nanopores that possesses excellent circularly polarized luminescence performance with a high luminescence dissymmetry factor as well as a large luminescent quantum yield when loaded with various luminescent dyes. Benefitting from the retention of chiral nanopores imprinted from a chiral liquid crystal arrangement, the chiral soft photonic crystal film can not only endow dyes with chiral properties, but also effectively avoid severe aggregation of guest dye molecules. More importantly, the soft photonic crystal film can be recycled many times by loading and eluting guest dye molecules while retaining good stability as well as circularly polarized luminescence performance, enabling various applications, including smart windows, multi-color circularly polarized luminescence and anticounterfeiting

    Change Guiding Network: Incorporating Change Prior to Guide Change Detection in Remote Sensing Imagery

    No full text
    The rapid advancement of automated artificial intelligence algorithms and remote sensing instruments has benefited change detection (CD) tasks. However, there is still a lot of space to study for precise detection, especially the edge integrity and internal holes phenomenon of change features. In order to solve these problems, we design the change guiding network (CGNet) to tackle the insufficient expression problem of change features in the conventional U-Net structure adopted in previous methods, which causes inaccurate edge detection and internal holes. Change maps from deep features with rich semantic information are generated and used as prior information to guide multiscale feature fusion, which can improve the expression ability of change features. Meanwhile, we propose a self-attention module named change guide module, which can effectively capture the long-distance dependency among pixels and effectively overcomes the problem of the insufficient receptive field of traditional convolutional neural networks. On four major CD datasets, we verify the usefulness and efficiency of the CGNet, and a large number of experiments and ablation studies demonstrate the effectiveness of CGNet

    Triboelectric Nanogenerators as Active Tactile Stimulators for Multifunctional Sensing and Artificial Synapses

    No full text
    The wearable tactile sensors have attracted great attention in the fields of intelligent robots, healthcare monitors and human-machine interactions. To create active tactile sensors that can directly generate electrical signals in response to stimuli from the surrounding environment is of great significance. Triboelectric nanogenerators (TENGs) have the advantages of high sensitivity, fast response speed and low cost that can convert any type of mechanical motion in the surrounding environment into electrical signals, which provides an effective strategy to design the self-powered active tactile sensors. Here, an overview of the development in TENGs as tactile stimulators for multifunctional sensing and artificial synapses is systematically introduced. Firstly, the applications of TENGs as tactile stimulators in pressure, temperature, proximity sensing, and object recognition are introduced in detail. Then, the research progress of TENGs as tactile stimulators for artificial synapses is emphatically introduced, which is mainly reflected in the electrolyte-gate synaptic transistors, optoelectronic synaptic transistors, floating-gate synaptic transistors, reduced graphene oxides-based artificial synapse, and integrated circuit-based artificial synapse and nervous systems. Finally, the challenges of TENGs as tactile stimulators for multifunctional sensing and artificial synapses in practical applications are summarized, and the future development prospects are expected
    corecore