5 research outputs found

    Impaired Cross-Talk between Mesolimbic Food Reward Processing and Metabolic Signaling Predicts Body Mass Index

    Get PDF
    The anticipation of the pleasure derived from food intake drives the motivation to eat, and hence facilitate overconsumption of food which ultimately results in obesity. Brain imaging studies provide evidence that mesolimbic brain regions underlie both general as well as food related anticipatory reward processing. In light of this knowledge, the present study examined the neural responsiveness of the ventral striatum in participants with a broad BMI spectrum. The study differentiated between general (i.e. monetary) and food related anticipatory reward processing. We recruited a sample of volunteers with greatly varying body weights, ranging from a low BMI (below 20 kg/m²) over a normal (20 to 25 kg/m²) and overweight (25 to 30 kg/m²) BMI, to class I (30 to 35 kg/m² ) and class II (35 to 40 kg/m²) obesity. A total of 24 participants underwent functional magnetic resonance imaging whilst performing both a food and monetary incentive delay task, which allows to measure neural activation during the anticipation of rewards. After the presentation of a cue indicating the amount of food or money to be won, participants had to react correctly in order to earn snack points or money coins which could then be exchanged for real food or money, respectively, at the end of the experiment. During the anticipation of both types of rewards, participants displayed activity in the ventral striatum, a region that plays a pivotal role in the anticipation of rewards. Additionally, we observed that specifically anticipatory food reward processing predicted the individual BMI (current and maximum lifetime). This relation was found to be mediated by impaired hormonal satiety signaling, i.e. increased leptin levels and insulin resistance. These findings suggest that heightened food reward motivation contributes to obesity through impaired metabolic signaling

    Inhibitory Control and Hedonic Response towards Food Interactively Predict Success in a Weight Loss Programme for Adults with Obesity

    No full text
    Objective: Low inhibitory control and strong hedonic response towards food are considered to contribute to overeating and obesity. Based on previous research, the present study aimed at examining the potentially crucial interplay between these two factors in terms of long-term weight loss in people with obesity. Methods: BMI, inhibitory control towards food, and food liking were assessed in obese adults prior to a weight reduction programme (OPTIFAST® 52). After the weight reduction phase (week 13) and the weight loss maintenance phase (week 52), participants' BMI was re-assessed. Results: Baseline BMI, inhibitory control and food liking alone did not predict weight loss. As hypothesised, however, inhibitory control and food liking interactively predicted weight loss from baseline to week 13 and to week 52 (albeit the latter effect was less robust). Participants with low inhibitory control and marked food liking were less successful in weight reduction. Conclusion: These findings underscore the relevance of the interplay between cognitive control and food reward valuation in the maintenance of obesity

    Galanin and α-MSH autoantibodies in cerebrospinal fluid of patients with Alzheimer's disease.

    No full text
    BACKGROUND: Neuropeptides galanin and α-melanocyte-stimulating hormone (α-MSH) are involved in the regulation of memory and appetite. Increased galanin and decreased α-MSH levels were reported in postmortem brains of patients with Alzheimer's disease (AD) but the underlying mechanisms are uncertain. Here we studied if autoantibodies (autoAbs) reacting with galanin and α-MSH are altered in AD. METHODS: Levels of free and total IgG autoAbs reacting with galanin and α-MSH were measured in sera and cerebrospinal fluid (CSF) of 18 subjects with AD and in 15 age-matched non-demented controls. Values were correlated with Mini-Mental State Examination (MMSE) score, body mass index (BMI) and CSF levels of AD biomarkers. RESULTS: CSF levels of total but not free IgG autoAbs against galanin were increased in AD, resulting in increased percentage of galanin autoAbs present as immune complexes. CSF levels of galanin total autoAbs and α-MSH free autoAbs correlated negatively with the severity of cognitive impairment as measured by MMSE. Both total and free autoAbs against galanin and α-MSH in CSF correlated negatively with age in AD patients but not in controls. CSF levels of galanin autoAbs and free α-MSH AutoAbs negatively correlated with CSF levels of t-Tau, p-Tau and ratios of t-Tau/Aβ42 or p-Tau/Aβ42 in AD patients but not in controls. CONCLUSIONS: AutoAbs reacting with galanin and α-MSH are present in CSF and are associated with clinical characteristics of AD patients. The functional significance and therapeutic potential of these autoAbs should be further clarified
    corecore