11 research outputs found

    Anticancer activity of a sub-fraction of dichloromethane extract of Strobilanthes crispus on human breast and prostate cancer cells in vitro

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The leaves of <it>Strobilanthes crispus </it>(<it>S. crispus</it>) which is native to the regions of Madagascar to the Malay Archipelago, are used in folk medicine for their antidiabetic, diuretic, anticancer and blood pressure lowering properties. Crude extracts of this plant have been found to be cytotoxic to human cancer cell lines and protective against chemically-induced hepatocarcinogenesis in rats. In this study, the cytotoxicity of various sub-fractions of dichloromethane extract isolated from the leaves of <it>S. crispus </it>was determined and the anticancer activity of one of the bioactive sub-fractions, SC/D-F9, was further analysed in breast and prostate cancer cell lines.</p> <p>Methods</p> <p>The dichloromethane extract of <it>S. crispus </it>was chromatographed on silica gel by flash column chromatography. The ability of the various sub-fractions obtained to induce cell death of MCF-7, MDA-MB-231, PC-3 and DU-145 cell lines was determined using the LDH assay. The dose-response effect and the EC<sub>50 </sub>values of the active sub-fraction, SC/D-F9, were determined. Apoptosis was detected using Annexin V antibody and propidium iodide staining and analysed by fluorescence microscopy and flow cytometry, while caspase 3/7 activity was detected using FLICA caspase inhibitor and analysed by fluorescence microscopy.</p> <p>Results</p> <p>Selected sub-fractions of the dichloromethane extract induced death of MCF-7, MDA-MB-231, PC-3 and DU-145 cells. The sub-fraction SC/D-F9, consistently killed breast and prostate cancer cell lines with low EC<sub>50 </sub>values but is non-cytotoxic to the normal breast epithelial cell line, MCF-10A. SC/D-F9 displayed relatively higher cytotoxicity compared to tamoxifen, paclitaxel, docetaxel and doxorubicin. Cell death induced by SC/D-F9 occurred via apoptosis with the involvement of caspase 3 and/or 7.</p> <p>Conclusions</p> <p>A dichloromethane sub-fraction of <it>S. crispus </it>displayed potent anticancer activities <it>in vitro </it>that can be further exploited for the development of a potential therapeutic anticancer agent.</p

    Perspectives on utilization of edible coatings and nano-laminate coatings for extension of postharvest storage of fruits and vegetables

    Get PDF
    It is known that in developing countries, a large quantity of fruit and vegetable losses results at postharvest and processing stages due to poor or scarce storage technology and mishandling during harvest. The use of new and innovative technologies for reducing postharvest losses is a requirement that has not been fully covered. The use of edible coatings (mainly based on biopolymers) as a postharvest technique for agricultural commodities has offered biodegradable alternatives in order to solve problems (e.g., microbiological growth) during produce storage. However, biopolymer-based coatings can present some disadvantages such as: poor mechanical properties (e.g., lipids) or poor water vapor barrier properties (e.g., polysaccharides), thus requiring the development of new alternatives to solve these drawbacks. Recently, nanotechnology has emerged as a promising tool in the food processing industry, providing new insights about postharvest technologies on produce storage. Nanotechnological approaches can contribute through the design of functional packing materials with lower amounts of bioactive ingredients, better gas and mechanical properties and with reduced impact on the sensorial qualities of the fruits and vegetables. This work reviews some of the main factors involved in postharvest losses and new technologies for extension of postharvest storage of fruits and vegetables, focused on perspective uses of edible coatings and nano-laminate coatings.María L. Flores-López thanks Mexican Science and Technology Council (CONACYT, Mexico) for PhD fellowship support (CONACYT Grant Number: 215499/310847). Miguel A. Cerqueira (SFRH/BPD/72753/2010) is recipient of a fellowship from the Fundação para a Ciência e Tecnologia (FCT, POPH-QREN and FSE Portugal). The authors also thank the FCT Strategic Project of UID/ BIO/04469/2013 unit, the project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and the project ‘‘BioInd Biotechnology and Bioengineering for improved Industrial and AgroFood processes,’’ REF. NORTE-07-0124-FEDER-000028 Co-funded by the Programa Operacional Regional do Norte (ON.2 – O Novo Norte), QREN, FEDER. Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico – FUNCAP, CE Brazil (CI10080-00055.01.00/13)

    Anti-capsular activity of CuO nanoparticles against Acinetobacter baumannii produce efflux pump

    No full text
    Copper oxide nanoparticles are modern kinds of antimicrobials, which may get a lot of interest in the clinical application. This study aimed to detect the anti-capsular activity of CuO nanoparticles against Acinetobacter baumannii produce efflux pump. Thirty-four different clinical A. baumannii isolates were collected and identified by the phenotypic and genetic methods by the recA gene as housekeeping. Antibiotic sensitivity and biofilm-forming ability, capsular formation were carried out. The effect of CuO nanoparticles on capsular isolates was detected, the synergistic effects of a combination CuO nanoparticles and gentamicin against A. baumannii were determined by micro broth checkerboard method, and the effect of CuO nanoparticles on the expression of ptk, espA and mexX genes was analyzed. Results demonstrated that CuO nanoparticles with gentamicin revealed a synergistic effect. Gene expression results show reducing the expression of these capsular genes by CuO nanoparticles is major conduct over reducing A. baumannii capsular action. Furthermore, results proved that there was a relationship between the capsule-forming ability and the absence of biofilm-forming ability. As bacterial isolates which were negative biofilm formation were positive in capsule formation and vice versa. In conclusion, CuO nanoparticles have the potential to be used as an anti-capsular agent against A. baumannii, and their combination with gentamicin can enhance their antimicrobial effect. The study also suggests that the absence of biofilm formation may be associated with the presence of capsule formation in A. baumannii. These findings provide a basis for further research on the use of CuO nanoparticles as a novel antimicrobial agent against A. baumannii and other bacterial pathogens, also to investigate the potential of CuO nanoparticles to inhibit the production of efflux pumps in A. baumannii, which are a major mechanism of antibiotic resistance
    corecore