2 research outputs found

    Highly Selective Photocatalytic Reduction of o-Dinitrobenzene to o-Phenylenediamine over Non-Metal-Doped TiO2 under Simulated Solar Light Irradiation.

    Get PDF
    Photocatalytic reduction and hydrogenation reaction of o-dinitrobenzene in the presence of oxalic acid over anatase-brookite biphasic TiO2 and non-metal-doped anatase-brookite biphasic TiO2 photocatalysts under solar simulated light was investigated. Compared with commercial P25 TiO2, the prepared un-doped and doped anatase-brookite biphasic TiO2 exhibited a high selectivity towards the formation of o-nitroaniline (85.5%) and o-phenylenediamine ~97%, respectively. The doped anatase-brookite biphasic TiO2 has promoted photocatalytic reduction of the two-nitro groups of o-dinitrobenzene to the corresponding o-phenylenediamine with very high yield ~97%. Electron paramagnetic resonance analysis, Transient Absorption Spectroscopy (TAS) and Photoluminescence analysis (PL) were performed to determine the distribution of defects and the fluorescence lifetime of the charge carriers for un-doped and doped photocatalysts. The superiority of the doped TiO2 photocatalysts is accredited to the creation of new dopants (C, N, and S) as hole traps, the formation of long-lived Ti3+ defects which leads to an increase in the fluorescence lifetime of the formed charge carriers. The schematic diagram of the photocatalytic reduction of o-dinitrobenzene using the doped TiO2 under solar light was also illustrated in detail
    corecore