4,194 research outputs found

    Relativistic surfatron process for Landau resonant electrons in radiation belts

    Full text link
    Recent theoretical studies of the nonlinear wave-particle interactions for relativistic particles have shown that Landau resonant orbits could be efficiently accelerated along the mean background magnetic field for propagation angles ΞΈ\theta in close proximity to a critical propagation ΞΈc\theta_\textrm{c} associated with a Hopf--Hopf bifurcation condition. In this report, we extend previous studies to reach greater modeling capacities for the study of electrons in radiation belts by including longitudinal wave effects and inhomogeneous magnetic fields. We find that even though both effects can limit the surfatron acceleration of electrons in radiation belts, gains in energy of the order of 100 keV, taking place on the order of ten milliseconds, are sufficiently strong for the mechanism to be relevant to radiation belt dynamics.Comment: Published in Nonlinear Processes of Geophysics but available in here without some random typos introduced by publishe

    Sparse Array DFT Beamformers for Wideband Sources

    Full text link
    Sparse arrays are popular for performance optimization while keeping the hardware and computational costs down. In this paper, we consider sparse arrays design method for wideband source operating in a wideband jamming environment. Maximizing the signal-to-interference plus noise ratio (MaxSINR) is adopted as an optimization objective for wideband beamforming. Sparse array design problem is formulated in the DFT domain to process the source as parallel narrowband sources. The problem is formulated as quadratically constraint quadratic program (QCQP) alongside the weighted mixed l1βˆ’βˆžl_{1-\infty}-norm squared penalization of the beamformer weight vector. The semidefinite relaxation (SDR) of QCQP promotes sparse solutions by iteratively re-weighting beamformer based on previous iteration. It is shown that the DFT approach reduces the computational cost considerably as compared to the delay line approach, while efficiently utilizing the degrees of freedom to harness the maximum output SINR offered by the given array aperture

    Sparse sum-of-squares certificates on finite abelian groups

    Full text link
    Let G be a finite abelian group. This paper is concerned with nonnegative functions on G that are sparse with respect to the Fourier basis. We establish combinatorial conditions on subsets S and T of Fourier basis elements under which nonnegative functions with Fourier support S are sums of squares of functions with Fourier support T. Our combinatorial condition involves constructing a chordal cover of a graph related to G and S (the Cayley graph Cay(G^\hat{G},S)) with maximal cliques related to T. Our result relies on two main ingredients: the decomposition of sparse positive semidefinite matrices with a chordal sparsity pattern, as well as a simple but key observation exploiting the structure of the Fourier basis elements of G. We apply our general result to two examples. First, in the case where G=Z2nG = \mathbb{Z}_2^n, by constructing a particular chordal cover of the half-cube graph, we prove that any nonnegative quadratic form in n binary variables is a sum of squares of functions of degree at most ⌈n/2βŒ‰\lceil n/2 \rceil, establishing a conjecture of Laurent. Second, we consider nonnegative functions of degree d on ZN\mathbb{Z}_N (when d divides N). By constructing a particular chordal cover of the d'th power of the N-cycle, we prove that any such function is a sum of squares of functions with at most 3dlog⁑(N/d)3d\log(N/d) nonzero Fourier coefficients. Dually this shows that a certain cyclic polytope in R2d\mathbb{R}^{2d} with N vertices can be expressed as a projection of a section of the cone of psd matrices of size 3dlog⁑(N/d)3d\log(N/d). Putting N=d2N=d^2 gives a family of polytopes PdβŠ‚R2dP_d \subset \mathbb{R}^{2d} with LP extension complexity xcLP(Pd)=Ξ©(d2)\text{xc}_{LP}(P_d) = \Omega(d^2) and SDP extension complexity xcPSD(Pd)=O(dlog⁑(d))\text{xc}_{PSD}(P_d) = O(d\log(d)). To the best of our knowledge, this is the first explicit family of polytopes in increasing dimensions where xcPSD(Pd)=o(xcLP(Pd))\text{xc}_{PSD}(P_d) = o(\text{xc}_{LP}(P_d)).Comment: 34 page
    • …
    corecore