8 research outputs found

    Mutant screen reveals the Piccolo's control over depression and brain-gonad crosstalk

    Get PDF
    Successful sexual reproduction involves a highly complex, genetically encoded interplay between animal physiology and behavior. Here we developed a screen to identify genes essential for rat reproduction based on an unbiased methodology involving mutagenesis via the Sleeping Beauty transposon. As expected, our screen identified genes where reproductive failure was connected to gametogenesis (Btrc, Pan3, Spaca6, Ube2k) and embryogenesis (Alk3, Exoc6b, Slc1a3, Tmx4, Zmynd8). In addition, our screen identified Atg13 (longevity) Dlg1 and Pclo (neuronal disorders), previously not associated with reproduction. Dominant Pclo traits caused epileptiform activity and affected genes supporting GABAergic synaptic transmission (Gabra6, Gabrg3), and animals exhibited a compromised crosstalk between the brain and gonads via disturbed GnRH signaling. Recessive Pclo traits disrupted conspecific recognition required for courtship/mating and were mapped to allelic markers for major depressive disorder (Grm5, Htr2a, Sorcs3, Negr1, Drd2). Thus, Pclo-deficiency in rats link neural networks controlling sexual motivation to Pclo variants that have been associated with human neurological disorders

    Sleeping Beauty transposon mutagenesis of the rat genome in spermatogonial stem cells

    No full text
    Since several aspects of physiology in rats has evolved to be more similar to humans than that of mice, it is highly desirable to link the rat into the process of annotating the human genome with function. However, the lack of technology for generating defined mutants in the rat genome has hindered the identification of causative relationships between genes and disease phenotypes. As an important step towards this goal, an approach of establishing transposon-mediated insertional mutagenesis in rat spermatogonial stem cells was recently developed. Transposons can be viewed as natural DNA transfer vehicles that, similar to integrating viruses, are capable of efficient genomic insertion. The mobility of transposons can be controlled by conditionally providing the transposase component of the transposition reaction. Thus, a DNA of interest such as a mutagenic gene trap cassette cloned between the inverted repeat sequences of a transposon-based vector can be utilized for stable genomic insertion in a regulated and highly efficient manner. Gene trap transposons integrate into the genome in a random fashion, and those mutagenic insertions that occurred in expressed genes can be selected in vitro based on activation of a reporter. Selected monoclonal as well as polyclonal libraries of gene trap clones are transplanted into the testes of recipient/founder male rats allowing passage of the mutation through the germline to F1 progeny after only a single cross with wild-type females. This paradigm enables a powerful methodological pipeline for forward genetic screens for functional gene annotation in the rat, as well as other vertebrate models. This article provides a detailed description on how to culture rat spermatogonial stem cell lines, their transfection with transposon plasmids, selection of gene trap insertions with antibiotics, transplantation of genetically modified stem cells and genotyping of knockout animals

    Generating knockout rats by transposon mutagenesis in spermatogonial stem cells

    No full text
    Disrupting genes in the rat on a genome-wide scale will allow the investigation of many biological processes linked to human health. Here we used transposon-mediated mutagenesis to knock out genes in rat spermatogonial stem cells. Given the capacity of the testis to support spermatogenesis from thousands of transplanted, genetically manipulated spermatogonia, this approach paves a way for high-throughput functional genomic studies in the laboratory rat

    A multiple Piccolino-RIBEYE interaction supports plate-shaped synaptic ribbons in retinal neurons

    No full text
    Active zones at chemical synapses are highly specialized sites for the regulated release of neurotransmitters. Despite a high degree of active zone protein conservation in vertebrates, every type of chemical synapse expresses a given set of protein isoforms and splice variants adapted to the demands on neurotransmitter release. So far, we know little about how specific active zone proteins contribute to the structural and functional diversity of active zones. In this study, we explored the nano-domain organization of ribbon-type active zones by addressing the significance of Piccolino, the ribbon synapse specific splice variant of Piccolo, for shaping the ribbon structure. We followed up on previous results, which indicated that rod photoreceptor synaptic ribbons lose their structural integrity in a knockdown of Piccolino. Here, we demonstrate an interaction between Piccolino and the major ribbon component RIBEYE that supports plate-shaped synaptic ribbons in retinal neurons. In a detailed ultrastructural analysis of three different types of retinal ribbon synapses in Piccolo/Piccolino deficient male and female rats, we show that the absence of Piccolino destabilizes the superstructure of plate-shaped synaptic ribbons, although with variable manifestation in the cell types examined. Our analysis illustrates how the expression of a specific active zone protein splice variant, like Piccolino, contributes to structural diversity of vertebrate active zones. SIGNIFICANCE STATEMENT: Retinal ribbon synapses are a specialized type of chemical synapse adapted for the regulated fast and tonic release of neurotransmitter. The hallmark of retinal ribbon synapses is the plate-shaped synaptic ribbon, which extends from the release site into the terminals' cytoplasm and tethers hundreds of synaptic vesicles. Here, we show that Piccolino, the synaptic ribbon specific splice variant of Piccolo, interacts with RIBEYE, the main component of synaptic ribbons. This interaction occurs via several PxDLS-like motifs located at the C-terminus of Piccolino, which can connect multiple RIBEYE molecules. Loss of Piccolino disrupts the characteristic plate-shaped structure of synaptic ribbons indicating a role of Piccolino in synaptic ribbon assembly

    Loss of Piccolo function in rats induces cerebellar network dysfunction and Pontocerebellar Hypoplasia type 3-like phenotypes

    No full text
    Piccolo, a presynaptic active zone protein, is best known for its role in the regulated assembly and function of vertebrate synapses. Genetic studies suggest a further link to several psychiatric disorders as well as Pontocerebellar Hypoplasia type 3 (PCH3). We have characterized recently generated Piccolo knockout (Pclo(gt/gt)) rats. Analysis of rats of both sexes revealed a dramatic reduction in brain size compared to wildtype (Pclo(wt/wt)) animals, attributed to a decrease in the size of the cerebral cortical, cerebellar and pontine regions. Analysis of the cerebellum and brainstem revealed a reduced granule cell (GC) layer and a reduction in size of pontine nuclei. Moreover, the maturation of mossy fiber (MF) afferents from pontine neurons and the expression of the α6 GABA(A) receptor subunit at the MF-GC synapse are perturbed, as well as the innervation of Purkinje cells by cerebellar climbing fibers (CFs). Ultrastructural and functional studies revealed a reduced size of MF boutons, with fewer synaptic vesicles and altered synaptic transmission. These data imply that Piccolo is required for the normal development, maturation and function of neuronal networks formed between the brainstem and cerebellum. Consistently, behavioral studies demonstrated that adult Pclo(gt/gt) rats display impaired motor coordination, despite adequate performance in tasks that reflect muscle strength and locomotion. Together these data suggest that loss of Piccolo function in patients with PCH3 could be involved in many of the observed anatomical and behavioral symptoms, and that the further analysis of these animals could provide fundamental mechanistic insights into this devastating disorder. SIGNIFICANCE STATEMENT: Pontocerebellar Hypoplasia type 3 (PCH3) is a devastating developmental disorder associated with severe developmental delay, progressive microcephaly with brachycephaly, optic atrophy, seizures and hypertonia with hyperreflexia. Recent genetic studies have identified non-sense mutations in the coding region of the Piccolo gene, suggesting a functional link between this disorder and the presynaptic active zone. Our analysis of Piccolo knockout rats supports this hypothesis, formally demonstrating that anatomical and behavioral phenotypes seen in patients with PCH3 are also exhibited by these Piccolo deficient animals
    corecore