42 research outputs found

    Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer.

    Get PDF
    Abstract Detection, treatment, and prediction of outcome for men with prostate cancer increasingly depend on a molecular understanding of tumor development and behavior. We characterized primary prostate cancer by monitoring expression levels of more than 8900 genes in normal and malignant tissues. Patterns of gene expression across tissues revealed a precise distinction between normal and tumor samples, and revealed a striking group of about 400 genes that were overexpressed in tumor tissues. We ranked these genes according to their differential expression in normal and cancer tissues by selecting for highly and specifically overexpressed genes in the majority of cancers with correspondingly low or absent expression in normal tissues. Several such genes were identified that act within a variety of biochemical pathways and encode secreted molecules with diagnostic potential, such as the secreted macrophage inhibitory cytokine, MIC-1. Other genes, such as fatty acid synthase, encode enzymes known as drug targets in other contexts, which suggests new therapeutic approaches

    Cdc6 and Cyclin E2 Are PTEN-Regulated Genes Associated with Human Prostate Cancer Metastasis1

    Get PDF
    Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is frequently inactivated in metastatic prostate cancer, yet the molecular consequences of this and their association with the metastatic phenotype are incompletely understood. We performed transcriptomic analysis and identified genes altered by conditional PTEN reexpression in C4-2, a human metastatic prostate cancer cell line with inactive PTEN. PTEN-regulated genes were disproportionately represented among genes altered in human prostate cancer progression and metastasis but not among those associated with tumorigenesis. From the former set, we identified two novel putative PTEN targets, cdc6 and cyclin E2, which were overexpressed in metastatic human prostate cancer and up-regulated as a function of PTEN depletion in poorly metastatic DU145 human prostate cancer cells harboring a wild type PTEN. Inhibition of cdc6 and cyclin E2 levels as a consequence of PTEN expression was associated with cell cycle G1 arrest, whereas use of PTEN activity mutants revealed that regulation of these genes was dependent on PTEN lipid phosphatase activity. Computational and promoter-reporter evaluations implicated the E2F transcription factor in PTEN regulation of cdc6 and cyclin E2 expression. Our results suggest a hypothetical model whereby PTEN loss upregulates cell cycle genes such as cdc6 and cyclin E2 that in turn promote metastatic colonization at distant sites

    Arrays of Arrays for High-Throughput Gene Expression Profiling

    No full text
    Gene expression profiling using DNA arrays is rapidly becoming an essential tool for research and drug discovery and may soon play a central role in disease diagnosis. Although it is possible to make significant discoveries on the basis of a relatively small number of expression profiles, the full potential of this technology is best realized through more extensive collections of expression measurements. The generation of large numbers of expression profiles can be a time-consuming and labor-intensive process with current one-at-a-time technology. We have developed the ability to obtain expression profiles in a highly parallel yet straightforward format using glass wafers that contain 49 individual high-density oligonucleotide arrays. This arrays of arrays concept is generalizable and can be adapted readily to other types of arrays, including spotted cDNA microarrays. It is also scalable for use with hundreds and even thousands of smaller arrays on a single piece of glass. Using the arrays of arrays approach and parallel preparation of hybridization samples in 96-well plates, we were able to determine the patterns of gene expression in 27 ovarian carcinomas and 4 normal ovarian tissue samples, along with a number of control samples, in a single experiment. This new approach significantly increases the ease, efficiency, and throughput of microarray-based experiments and makes possible new applications of expression profiling that are currently impractical

    Altered Expression of TFF-1 and CES-2 in Barrett's Esophagus and Associated Adenocarcinomas

    Get PDF
    Identification of biomarkers to recognize individuals with Barrett's esophagus (BE) predisposed to develop malignancy is currently a pressing issue. We utilized gene expression profiling to compare molecular signatures of normal esophagus and stomach, BE, and adenocarcinoma (AC) to identify such potential biomarkers. Over 22,000 genes were analyzed by oligonucleotide microarrays on 38 unique RNA. Unsupervised and supervised clusterings were performed on a subset of 2849 genes that varied most significantly across the specimens. Unsupervised clustering identified two discernable molecular BE profiles, one of which was similar to normal gastric tissue (“BE1”), and another that was shared by several of the AC specimens (“BE2”). The BE1 profile included expression of several genes that have been described as tumor-suppressor genes, most notably trefoil factor 1 (TFF-1). The BE2 profile included expression of genes previously found overexpressed in cancers, such as carboxylesterase-2 (CES-2). IHC demonstrated the loss of TFF-1 late in the progression of BE to AC. It also revealed CES-2 as being upregulated in AC documented to have arisen in the presence of BE. These potential biomarkers, as well as the relative expression of genes from BE1 versus those from BE2, may be validated in the future to aid in risk stratification and guide treatment protocols in patients with BE and associated AC
    corecore