15 research outputs found
Advocating for a Collaborative Research Approach on Transgenerational Transmission of Trauma.
Since Myers (1915) coined the term 'shell shock' to define the prolonged suffering of soldiers returning from the Great War, the psychological and physical result of distressing experiences, known as trauma, has been of academic interest. Transgenerational transmission of trauma effects has been recorded, demonstrating that on some level, the exposure to trauma of one generation can impact individuals of a subsequent generation (Yehuda & Lehrner, 2018). Observational studies on children of holocaust survivors formed the basis of this trajectory of research (Rakoff, 1966), and eventually this phenomenon became referred to as the transgenerational transmission of trauma (TTT). Since then, TTT has been observed in several contexts, including within families who have experienced high rates historical trauma (O'Neill et al., 2016), within regions high-frequencies of historical war and terrorism (Yehuda & Lehrner, 2018) and those who have undergone famine (Ahmed, 2010). This report aims to outline several pathways (biological, psychological, and sociological) by which trauma may be transmitted across generations. Moreover, it discusses several methods of trauma assessment and the related challenges and benefits. Lastly, this report advocates a biopsychosocial approach - an interdisciplinary model using the interplay of biological, psychological, and social-environmental factors - to research TTT. By promoting the benefits of such an interdisciplinary approach we attempt to break up silos between disciplines and encourage collaboration between academics from various backgrounds researching this topic to better serve individuals impacted by TTT
Phenotypic and Cytologic Studies of Lymphoid Cells and Monocytes in Primary Culture of Porcine Bone Marrow During Infection of African Swine Fever Virus
We have modeled in vitro infection of African swine fever virus (ASFV) in primary unstimulated cells of the porcine bone marrow and have studied the phenotypical cytophotometry. Monocytes and large-sized lymphocytes completely vanished in 72 h of infection which is result of high sensitivity of those cells to ASFV. We describe DNA synthesis in monocytes at 24 h post infection. Cytophotometry of the uninfected cells revealed the few number of atypical lymphocytes and lymphoblasts after 72 h of cultivation; whereas in viral infected cultures, atypical cells appeared in large quantity (about 14%) with 24 h. Most of atypical lymphocytes and lymphoblasts had altered nucleus, and only a small number of atypical cells had additional nucleus. The cytophotometry of main and additional nuclei showed that DNA content didn’t exceed diploid standard which indicates that the additional nuclei were consequence of fragmentation of nuclei in lymphocytes
Biochemical and Localization Analyses of Putative Type III Secretion Translocator Proteins CopB and CopB2 of Chlamydia trachomatis Reveal Significant Distinctions â–ż
Chlamydia spp. are among the many pathogenic Gram-negative bacteria that employ a type III secretion system (T3SS) to overcome host defenses and exploit available resources. Significant progress has been made in elucidating contributions of T3S to the pathogenesis of these medically important, obligate intracellular parasites, yet important questions remain. Chief among these is how secreted effector proteins traverse eukaryotic membranes to gain access to the host cytosol. Due to a complex developmental cycle, it is possible that chlamydiae utilize a different complement of proteins to accomplish translocation at different stages of development. We investigated this possibility by extending the characterization of C. trachomatis CopB and CopB2. CopB is detected early during infection but is depleted and not detected again until about 20 h postinfection. In contrast, CopB2 was detectible throughout development. CopB is associated with the inclusion membrane. Biochemical and ectopic expression analyses were consistent with peripheral association of CopB2 with inclusion membranes. This interaction correlated with development and required both chlamydial de novo protein synthesis and T3SS activity. Collectively, our data indicate that it is unlikely that CopB serves as the sole chlamydial translocation pore and that CopB2 is capable of association with the inclusion membrane