240 research outputs found
Autotoxicity of chard and its allelopathic potentiality on germination and some metabolic activities associated with growth of wheat seedlings
In this study, the allelopathic effect of aqueous whole mature chard plant extract (Beta vulgaris L. var.Cicla) on wheat (Triticum vulgare L. var. Sides 1) and an associated weed (chard) was investigated.Plants used were sampled in 2006, and then plant extracts were obtained after they were ground and processed with distilled water. Twenty five of wheat grains and the same number of chard seeds ofuniform size and weight were placed in a mixture on sterile filter paper in 15 cm Petri-dishes. Treated Petri-dishes were each supplied with 20 ml extract of 0.25,1, 4, 8, and 12% (w/v) while untreated controlwas supplied with 20 ml of distilled water. After 10 days the germination percentage, vigour value, seedling growth criteria and some physiological processes were counted. The aqueous extract retardedthe germination of chard more effectively than that of wheat and the effect was concentration dependent. The lowest concentration stimulated the germination of both wheat and chard; on the otherhand, the germination was retarded under the application of concentrations above 1%. However, 1% concentration had a positive effect on wheat and negative on chard. HPLC analyses of the watersoluble extract of whole chard plant residue revealed the presence of eight phenolic aglycones that show the abundant of chichimec acid, (+) camphor, hydroxybenzoic, p-coumaric and vanillic acids aswell as trace amounts of coumarin and protocatechuic acids. This extract may be used as a bioherbicide to control the germination and growth of itself (autotoxicity)
Relationship between biomarkers of muscle damage and redox status in response to a weightlifting training session: effect of time-of-day
The aims of the present study were to: (1) investigate the effect of a weightlifting training session and time-of-day (TOD) upon biological parameters (i.e., oral temperature, hematological, C-reactive protein (CRP), and oxidative stress) and (2) assess their possible link with muscle damage responses. Nine weightlifters (21 ± 0.5 years) performed, in a randomized order, three Olympic-Weightlifting sessions (i.e., at 08:00, 14:00, and 18:00). Blood samples were collected at rest, 3 min and 48 h after each training session. Between pre- and post-training session, ANOVA showed significant increases in oxidative stress markers at the three TODs (p < 0.01) and significant increases for creatine kinase (CK) and lactate dehydrogenase (LDH) only at 08:00 and 18:00 (p < 0.05). At rest, the results showed a significant diurnal variation for the majority of the selected parameters except for malondialdehyde (MDA), total bilirubin, and CRP with higher values observed at 18:00 (p < 0.05). After the training session, given the higher rate of increase during the morning session, these diurnal variations persisted for temperature and WBC (p < 0.01) and were suppressed for CK, LDH, uric acid (UA), catalase, and glutathione peroxidase. The main significant correlations (p < 0.001) were observed between: (1) CK and MDA (r = 0.6) and CK and UA (r = 0.66 and r = 0.82) during the morning and evening training sessions; (2) CK and CRP only during the morning session (r = 0.5); and (3) CRP and WBC during the three training sessions (r = 0.8). In conclusion, the present findings: (1) confirm that the muscle damage responses could be induced by a high level of oxidative stress and (2) suggest to avoid scheduling training sessions in the morning given the higher muscle damage, inflammatory, and oxidative responses at this TOD
Morning melatonin ingestion and diurnal variation of short-term maximal performances in soccer players
Aim Very few studies have investigated the temporal specificity of melatonin (MEL) ingestion upon short-term maximal athletic performances. The aim of the present study was to explore the effect of morning MEL ingestion on cognitive and physical performances measured in the afternoon. Methods Twelve soccer players from a Tunisian squad (17.9 ± 1.3 years, 1.74 ± 0.06 m and 62.0 ± 8.8 kg) participated in the present study. They performed two testing sessions at 08:00 h, 12:00 h and 16:00 h after either MEL (5mg) or placebo (PLA) ingestion, in a randomized order. During each period, the participants performed the following cognitive and physical tests: reaction time and vigilance tests, medicine-ball throw (MBT), five jumps, handgrip strength (HG), and agility tests. Results cognitive and physical performances were significantly higher at 16:00 h compared to 08:00 h during the two conditions (p < 0.05). Moreover, performances of MBT and HG were lower in the morning with MEL in comparison to PLA (p < 0.05). However, MEL ingestion did not affect physical and cognitive performances measured at 12:00 h and 16:00 h. Conclusion morning MEL ingestion has no unfavourable effect on afternoon physical and cognitive performances in soccer players
Effect of Different Growth Conditions on Certain Biochemical Parameters of Different Cyanobacterial Strains
Aims: Variation in the traditional growth medium conditions to enhance the production of lipids, carbohydrates, protein and the free amino acids content of three cyanobacterial species. Methodology and Results: Three species of cyanobacteria (Anabaena laxa, Anabaena fertilissima and Nostoc muscorum) were collected from the culture collection of Soils, Water and Environment Research Institute, Agriculture Research Center, Giza, Egypt, to investigate their biochemical composition under different growth conditions, using BG110 (nitrogen free) as growth medium. These conditions were represented by control medium, static glucose medium with (1%, w/v), aerated medium (aerated by bubbling technique depending on CO2 normally existed in air with a concentration of 0.03%), molasses medium (0.7%, v/v) and aerated medium enriched with glucose (1%, w/v). Lipid content, total carbohydrates, soluble proteins and free amino acids were determined at the previous conditions. Glucose at 0.7% (w/v) was the most favorable for lipid production in A. laxa, where it exhibited the highest lipid content (427 ÎĽg/g fresh wt.). Increasing molasses concentration up to 0.7% (v/v) produced an increase in lipid contents of the tested cyanobacterial strains. The highest lipid content of both N. muscorum (366.2 ÎĽg/g fresh wt.) and A. laxa (357.4 ÎĽg/g fresh wt.) were recorded at molasses concentrations of 0.1 and 0.7% (v/v), respectively. A. laxa expressed high significant values for both proteins (31.6 ÎĽg/mL) and free amino acids (40.5 mg/g dry wt.) after 6 days of incubation period under aerated enriched glucose condition (1%, w/v). Also, at the same growth conditions, A. fertilissima exhibited high significant values for carbohydrates at 4th day (876.8 mg/g dry wt.). Conclusion, significance and impact of study: Aerated enriched glucose medium (1%, w/v) was the best growth medium condition used in the present study
Effect of melatonin ingestion on physical performance, metabolic responses, and recovery after an intermittent training session
Objectives Fatigue is a limiting factor for sport performance. For this reason, optimal recovery after training is just as critical as the training program itself, if not more. Indeed, there is a need for strategies that can facilitate recovery after training, and one such strategy is the ingestion of supplements like melatonin (MEL). This study aimed to evaluate if MEL intake could improve recovery of athletes after an intermittent training session (ITS). Methods Fifteen elite female athletes (17.4 ± 0.4 years, 76.4 ± 5.6 kg, 1.76 ± 0.04 m; mean ± standard deviation) participated in two testing campaigns. During each period, they performed a battery of physical and cognitive tests before and after an ITS, as well as after ingesting MEL (6 mg tablet) or placebo in a randomized design. The ITS comprised the modified agility T-test, squat jump, counter movement jump, maximum standing ball-throw velocity test, maximum jump ball-throw velocity test, and 20-m sprint. Oral temperature (OT) and vigilance were evaluated before and after the ITS. Rating of perceived exertion (RPE), blood lactate [La], and glucose [Gl] were recorded after each ITS. Results Short-term performance, recovery of physical performance, and OT were not affected by MEL ingestion after the ITS. Moreover, MEL did not affect cognitive performance or RPE scores after the ITS. However, [La] and [Gl] (p < 0.05 for both) were decreased after MEL ingestion. Conclusion: MEL has no effect on the recovery of physical performance but may affect glucose utilization and lactate metabolism during the team-handball training session
ABC Triblock Copolymer Worms: Synthesis, Characterization, and Evaluation as Pickering Emulsifiers for Millimeter-Sized Droplets
Polymerization-induced self-assembly (PISA) is used to prepare linear poly(glycerol monomethacrylate)–poly(2-hydroxypropyl methacrylate)–poly(benzyl methacrylate) [PGMA–PHPMA–PBzMA] triblock copolymer nano-objects in the form of a concentrated aqueous dispersion via a three-step synthesis based on reversible addition–fragmentation chain transfer (RAFT) polymerization. First, GMA is polymerized via RAFT solution polymerization in ethanol, then HPMA is polymerized via RAFT aqueous solution polymerization, and finally BzMA is polymerized via “seeded” RAFT aqueous emulsion polymerization. For certain block compositions, highly anisotropic worm-like particles are obtained, which are characterized by small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The design rules for accessing higher order morphologies (i.e., worms or vesicles) are briefly explored. Surprisingly, vesicular morphologies cannot be accessed by targeting longer PBzMA blocks—instead, only spherical nanoparticles are formed. SAXS is used to rationalize these counterintuitive observations, which are best explained by considering subtle changes in the relative enthalpic incompatibilities between the three blocks during the growth of the PBzMA block. Finally, the PGMA–PHPMA–PBzMA worms are evaluated as Pickering emulsifiers for the stabilization of oil-in-water emulsions. Millimeter-sized oil droplets can be obtained using low-shear homogenization (hand-shaking) in the presence of 20 vol % n-dodecane. In contrast, control experiments performed using PGMA–PHPMA diblock copolymer worms indicate that these more delicate nanostructures do not survive even these mild conditions
Tuning the critical gelation temperature of thermo-responsive diblock copolymer worm gels
Amphiphilic diblock copolymer nano-objects can be readily prepared using reversible addition–fragmentation chain transfer (RAFT) polymerization. For example, poly(glycerol monomethacrylate) (PGMA) chain transfer agents (CTA) can be chain-extended using 2-hydroxypropyl methacrylate (HPMA) via RAFT aqueous dispersion polymerization to form well-defined spheres, worms or vesicles at up to 25% solids. The worm morphology is of particular interest, since multiple inter-worm contacts lead to the formation of soft free-standing gels, which undergo reversible degelation on cooling to sub-ambient temperatures. However, the critical gelation temperature (CGT) for such thermo-responsive gels is ≤20 °C, which is relatively low for certain biomedical applications. In this work, a series of new amphiphilic diblock copolymers are prepared in which the core-forming block comprises a statistical mixture of HPMA and di(ethylene glycol) methyl ether methacrylate (DEGMA), which is a more hydrophilic monomer than HPMA. Statistical copolymerizations proceeded to high conversion and low polydispersities were achieved in all cases (Mw/Mn < 1.20). The resulting PGMA-P(HPMA-stat-DEGMA) diblock copolymers undergo polymerization-induced self-assembly at 10% w/w solids to form free-standing worm gels. SAXS studies indicate that reversible (de)gelation occurs below the CGT as a result of a worm-to-sphere transition, with further cooling to 5 °C affording weakly interacting copolymer chains with a mean aggregation number of approximately four. This corresponds to almost molecular dissolution of the copolymer spheres. The CGT can be readily tuned by varying the mean degree of polymerization and the DEGMA content of the core-forming statistical block. For example, a CGT of 31 °C was obtained for PGMA59-P(HPMA91-stat-DEGMA39). This is sufficiently close to physiological temperature (37 °C) to suggest that these new copolymer gels may offer biomedical applications as readily-sterilizable scaffolds for mammalian cells, since facile cell harvesting can be achieved after a single thermal cycle
Recommended from our members
Synthesis and solution properties of a temperature-responsive PNIPAM–b-PDMS–b-PNIPAM triblock copolymer
In this paper, we report the synthesis and self-assembly of a novel thermoresponsive PNIPAM60–b-PDMS70–b-PNIPAM60 triblock copolymer in aqueous solution. The copolymer used a commercially available precursor modified with an atom transfer radical polymerization (ATRP) initiator to produce an ABA triblock copolymer via ATRP. Small-angle neutron scattering (SANS) was used to shed light on the structures of nanoparticles formed in aqueous solutions of this copolymer at two temperatures, 25 and 40 °C. The poly(dimethylsiloxane) block is very hydrophobic and poly(N-isopropylacrylamide) (PNIPAM) is thermoresponsive. SANS data at 25 °C indicates that the solutions of PNIPAM–b-PDMS–b-PNIPAM copolymers form well-defined aggregates with presumably core–shell structures below cloud point temperature. The scattering curves originating from nanoparticles formed at 40 °C in 100% D2O or 100% H2O were successfully fitted with the Beaucage model describing aggregates with hierarchical structure
- …