10,194 research outputs found

    Dilute Bose gases interacting via power-law potentials

    Full text link
    Neutral atoms interact through a van der Waals potential which asymptotically falls off as r^{-6}. In ultracold gases, this interaction can be described to a good approximation by the atom-atom scattering length. However, corrections arise that depend on the characteristic length of the van der Waals potential. We parameterize these corrections by analyzing the energies of two- and few-atom systems under external harmonic confinement, obtained by numerically and analytically solving the Schrodinger equation. We generalize our results to particles interacting through a longer-ranged potential which asymptotically falls off as r^{-4}.Comment: 7 pages, 4 figure

    Promoting independent learning skills using video on digital language laboratories

    Get PDF
    This is the author's PDF version of an article published in Computer assisted language learning ©2006. The definitive version is available at http://www.informaworld.com/The article discusses the potential for developing independent learning skills using the digital language laboratory with particular reference to exploiting the increasingly available resource of digital video. It investigates the potential for recording and editing video clips from online sources and digitalising clips from analogue recordings and reflects on the current status quo regarding the complex copyright regulations in this area. It describes two pilot self-access programmes based on video clips which were undertaken with University College Chester undergraduates and reflects on the value of the experience for students in developing a wide range of language skills as well as independent learning skills using their feedback on the experience

    The maximum density droplet to lower density droplet transition in quantum dots

    Full text link
    We show that, Landau level mixing in two-dimensional quantum dot wave functions can be taken into account very effectively by multiplying the exact lowest Landau level wave functions by a Jastrow factor which is optimized by variance minimization. The comparison between exact diagonalization and fixed phase diffusion Monte Carlo results suggests that the phase of the many-body wave functions are not affected much by Landau level mixing. We apply these wave functions to study the transition from the maximum density droplet state (incipient integer quantum Hall state with angular momentum L=N(N-1)/2) to lower density droplet states (L>N(N-1)/2).Comment: 8 pages, 5 figures, accepted for publication in Phys. Rev.

    Fermion Helicity Flip Induced by Torsion Field

    Get PDF
    We show that in theories of gravitation with torsion the helicity of fermion particles is not conserved and we calculate the probability of spin flip, which is related to the anti-symmetric part of affine connection. Some cosmological consequences are discussed.Comment: 6 pages, to appear in Europhysics Letter

    Few-body resonances of unequal-mass systems with infinite interspecies two-body s-wave scattering length

    Full text link
    Two-component Fermi and Bose gases with infinitely large interspecies s-wave scattering length asa_s exhibit a variety of intriguing properties. Among these are the scale invariance of two-component Fermi gases with equal masses, and the favorable scaling of Efimov features for two-component Bose gases and Bose-Fermi mixtures with unequal masses. This paper builds on our earlier work [D. Blume and K. M. Daily, arXiv:1006.5002] and presents a detailed discussion of our studies of small unequal-mass two-component systems with infinite asa_s in the regime where three-body Efimov physics is absent. We report on non-universal few-body resonances. Just like with two-body systems on resonance, few-body systems have a zero-energy bound state in free space and a diverging generalized scattering length. Our calculations are performed within a non-perturbative microscopic framework and investigate the energetics and structural properties of small unequal-mass two-component systems as functions of the mass ratio Îș\kappa, and the numbers N1N_{1} and N2N_2 of heavy and light atoms. For purely attractive Gaussian two-body interactions, we find that the (N1,N2)=(2,1)(N_1,N_2)=(2,1) and (3,1)(3,1) systems exhibit three-body and four-body resonances at mass ratios Îș=12.314(2)\kappa = 12.314(2) and 10.4(2), respectively. The three- and four-particle systems on resonance are found to be large. This suggests that the corresponding wave function has relatively small overlap with deeply-bound dimers, trimers or larger clusters and that the three- and four-body systems on resonance have a comparatively long lifetime. Thus, it seems feasible that the features discussed in this paper can be probed experimentally with present-day technology.Comment: 17 pages, 17 figure

    Simulating The Doppler-Free Fluorescence Spectrum For The Potassium D1 Transitions

    Get PDF
    Radiation theory (absorption, spontaneous emission, and stimulated emission) is applied to Potassium (39K and 41K) to examine details of the D1 lines, Figure 1, in the near IR at 770 nm. When examining the resonance fluorescence from two counter-propagation laser beams in a K cell, Figure 2, three prominent “Doppler-free” features—dips at the D1a and D1b resonances and spikes at their crossover frequencies—stand out superposed on the fluorescence background. They are examined with a detailed simulation, Figures 3 and 4, and compared to observations, Figure 5. Parametric studies of the Doppler-free features, Figures 6–8, indicate how to maximize their prominence, and thus their importance as frequency references for laboratory and atmospheric observations

    The generating function for a particular class of characters of SU(n)

    Get PDF
    We compute the generating function for the characters of the irreducible representations of SU(n) whose associated Young diagrams have only two rows with the same number of boxes. The result is a rational determinantal expression in which both the numerator and the denominator have a simple structure when expressed in terms of Schur polynomials.Comment: 7 pages, no figure

    Spin constrained orbital angular momentum control in high-harmonic generation

    Full text link
    The interplay between spin and orbital angular momentum in the up-conversion process allows us to control the macroscopic wave front of high harmonics by manipulating the microscopic polarizations of the driving field. We demonstrate control of orbital angular momentum in high harmonic generation from both solid and gas phase targets using the selection rules of spin angular momentum. The gas phase harmonics extend the control of angular momentum to extreme-ultraviolet wavelength. We also propose a bi-color scheme to produce spectrally separated extreme-ultraviolet radiation carrying orbital angular momentum
    • 

    corecore