54 research outputs found

    A Common Origin for Ridge-and-Trough Terrain on Icy Satellites by Sluggish Lid Convection

    Full text link
    Ridge-and-trough terrain is a common landform on outer Solar System icy satellites. Examples include Ganymede's grooved terrain, Europa's gray bands, Miranda's coronae, and several terrains on Enceladus. The conditions associated with the formation of each of these terrains are similar: heat flows of order tens to a hundred milliwatts per meter squared, and deformation rates of order 10−1610^{-16} to 10−1210^{-12} s−1^{-1}. Our prior work shows that the conditions associated with the formation of these terrains on Ganymede and the south pole of Enceladus are consistent with vigorous solid-state ice convection in a shell with a weak surface. We show that sluggish lid convection, an intermediate regime between the isoviscous and stagnant lid regimes, can create the heat flow and deformation rates appropriate for ridge and trough formation on a number of satellites, regardless of the ice shell thickness. For convection to deform their surfaces, the ice shells must have yield stresses similar in magnitude to the daily tidal stresses. Tidal and convective stresses deform the surface, and the spatial pattern of tidal cracking controls the locations of ridge-and-trough terrain.Comment: 45 pages, 7 figures; accepted for publication in Physics of the Earth and Planetary Interior

    Measuring Circadian Advantage in Major League Baseball: A 10-Year Retrospective Study

    Get PDF
    Purpose: The effect of travel on athletic performance has been investigated in previous studies. The purpose of this study was to investigate this effect on game outcome over 10 Major League Baseball (MLB) seasons. Methods: Using the convention that for every time zone crossed, synchronization requires 1 d, teams were assigned a daily number indicating the number of days away from circadian resynchronization. With these values, wins and losses for all games could be analyzed based on circadian values. Results: 19,079 of the 24,121 games (79.1%) were played between teams at an equal circadian time. The remaining 5,042 games consisted of teams playing at different circadian times. The team with the circadian advantage won 2,620 games (52.0%, P = .005), a winning percentage that exceeded chance but was a smaller effect than home field advantage (53.7%, P < .0001). When teams held a 1-h circadian advantage, winning percentage was 51.7% (1,903-1,781). Winning percentage with a 2-h advantage was 51.8% (620-578) but increased to 60.6% (97-63) with a 3-h advantage (3-h advantage > 2-hadvantage = 1-h advantage, P = .036). Direction of advantage showed teams traveling from Western time zones to Eastern time zones were more likely to win (winning percentage = .530) than teams traveling from Eastern time zones to Western time zones (winning percentage = .509) with a winning odds 1.14 (P = .027). Conclusion: These results suggest that in the same way home field advantage influences likelihood of success, so too does the magnitude and direction of circadian advantage. Teams with greater circadian advantage were more likely to win

    Bridge to the stars: A mission concept to an interstellar object

    Get PDF
    Exoplanet discoveries since the mid-1990’s have revealed an astounding diversity of planetary systems. Studying these systems is essential to understanding planetary formation processes, as well as the development of life in the universe. Unfortunately, humanity can only observe limited aspects of exoplanetary systems by telescope, and the significant distances between stars presents a barrier to in situ exploration. In this study, we propose an alternative path to gain insight into exoplanetary systems: Bridge, a mission concept design to fly by an interstellar object as it passes through our solar system. Designed as a New Frontiers-class mission during the National Aeronautics and Space Administration (NASA) Planetary Science Summer School, Bridge would provide a unique opportunity to gain insight into potential physical, chemical, and biological differences between solar systems as well as the possible exchange of planetary materials between them. Bridge employs ultraviolet/visible, near-infrared, and mid-infrared point spectrometers, a visible camera, and a guided impactor. We also provide a quantitative Monte Carlo analysis that estimates wait times for a suitable target, and examines key trades between ground storage and a parking orbit, power sources, inner versus outer solar system encounters, and launch criteria. Due to the fleeting nature of interstellar objects, reaching an interstellar object may require an extended ground storage phase for the spacecraft until a suitable ISO is discovered, followed by a rapid response launch strategy. To enable rapid response missions designed to intercept such unique targets, language would need to be added to future NASA announcements of opportunity such that ground storage and rapid response would be allowable components of a proposed mission

    Grand Challenges of Advanced Computing for Energy Innovation Report from the Workshop Held July 31-August 2, 2012

    Full text link
    On July 31-August 2 of 2012, the U.S. Department of Energy (DOE) held a workshop entitled Grand Challenges of Advanced Computing for Energy Innovation. This workshop built on three earlier workshops that clearly identified the potential for the Department and its national laboratories to enable energy innovation. The specific goal of the workshop was to identify the key challenges that the nation must overcome to apply the full benefit of taxpayer-funded advanced computing technologies to U.S. energy innovation in the ways that the country produces, moves, stores, and uses energy. Perhaps more importantly, the workshop also developed a set of recommendations to help the Department overcome those challenges. These recommendations provide an action plan for what the Department can do in the coming years to improve the nation’s energy future

    High-Throughput Sequencing of Arabidopsis microRNAs: Evidence for Frequent Birth and Death of MIRNA Genes

    Get PDF
    In plants, microRNAs (miRNAs) comprise one of two classes of small RNAs that function primarily as negative regulators at the posttranscriptional level. Several MIRNA genes in the plant kingdom are ancient, with conservation extending between angiosperms and the mosses, whereas many others are more recently evolved. Here, we use deep sequencing and computational methods to identify, profile and analyze non-conserved MIRNA genes in Arabidopsis thaliana. 48 non-conserved MIRNA families, nearly all of which were represented by single genes, were identified. Sequence similarity analyses of miRNA precursor foldback arms revealed evidence for recent evolutionary origin of 16 MIRNA loci through inverted duplication events from protein-coding gene sequences. Interestingly, these recently evolved MIRNA genes have taken distinct paths. Whereas some non-conserved miRNAs interact with and regulate target transcripts from gene families that donated parental sequences, others have drifted to the point of non-interaction with parental gene family transcripts. Some young MIRNA loci clearly originated from one gene family but form miRNAs that target transcripts in another family. We suggest that MIRNA genes are undergoing relatively frequent birth and death, with only a subset being stabilized by integration into regulatory networks
    • …
    corecore