5 research outputs found

    Virtual Engineering Sciences Learning Lab: Giving STEM Education a Second Life

    Get PDF
    Engineering education in the 21st century faces multiple obstacles including limited accessibility of course resources due, in part, to the costs associated with acquiring and maintaining equipment and staffing laboratories. Another continuing challenge is the low level of participation of women and other groups historically underrepresented in STEM disciplines. As a partial remedy for these issues, we established a Virtual Engineering Sciences Learning Lab (VESLL) that provides interactive objects and learning activities, multimedia displays, and instant feedback procedures in a virtual environment to guide students through a series of key quantitative skills and concepts. Developed in the online virtual world Second LifeTM, VESLL is an interactive environment that supports STEM education, with potential to help reach women and other underrepresented groups. VESLL exposes students to various quantitative skills and concepts through visualization, collaborative games, and problem solving with realistic learning activities. Initial assessments have demonstrated high student interest in VESLL\u27s potential as a supplementary instructional tool and show that student learning experiences were improved by use of VESLL. Ultimately, the VESLL project contributes to the ongoing body of evidence suggesting that online delivery of course content has remarkable potential when properly deployed by STEM educators

    Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: an ecological study

    Get PDF
    Background The SARS-CoV-2 variant B.1.1.7 was first identified in December, 2020, in England. We aimed to investigate whether increases in the proportion of infections with this variant are associated with differences in symptoms or disease course, reinfection rates, or transmissibility. Methods We did an ecological study to examine the association between the regional proportion of infections with the SARS-CoV-2 B.1.1.7 variant and reported symptoms, disease course, rates of reinfection, and transmissibility. Data on types and duration of symptoms were obtained from longitudinal reports from users of the COVID Symptom Study app who reported a positive test for COVID-19 between Sept 28 and Dec 27, 2020 (during which the prevalence of B.1.1.7 increased most notably in parts of the UK). From this dataset, we also estimated the frequency of possible reinfection, defined as the presence of two reported positive tests separated by more than 90 days with a period of reporting no symptoms for more than 7 days before the second positive test. The proportion of SARS-CoV-2 infections with the B.1.1.7 variant across the UK was estimated with use of genomic data from the COVID-19 Genomics UK Consortium and data from Public Health England on spike-gene target failure (a non-specific indicator of the B.1.1.7 variant) in community cases in England. We used linear regression to examine the association between reported symptoms and proportion of B.1.1.7. We assessed the Spearman correlation between the proportion of B.1.1.7 cases and number of reinfections over time, and between the number of positive tests and reinfections. We estimated incidence for B.1.1.7 and previous variants, and compared the effective reproduction number, Rt, for the two incidence estimates. Findings From Sept 28 to Dec 27, 2020, positive COVID-19 tests were reported by 36 920 COVID Symptom Study app users whose region was known and who reported as healthy on app sign-up. We found no changes in reported symptoms or disease duration associated with B.1.1.7. For the same period, possible reinfections were identified in 249 (0·7% [95% CI 0·6–0·8]) of 36 509 app users who reported a positive swab test before Oct 1, 2020, but there was no evidence that the frequency of reinfections was higher for the B.1.1.7 variant than for pre-existing variants. Reinfection occurrences were more positively correlated with the overall regional rise in cases (Spearman correlation 0·56–0·69 for South East, London, and East of England) than with the regional increase in the proportion of infections with the B.1.1.7 variant (Spearman correlation 0·38–0·56 in the same regions), suggesting B.1.1.7 does not substantially alter the risk of reinfection. We found a multiplicative increase in the Rt of B.1.1.7 by a factor of 1·35 (95% CI 1·02–1·69) relative to pre-existing variants. However, Rt fell below 1 during regional and national lockdowns, even in regions with high proportions of infections with the B.1.1.7 variant. Interpretation The lack of change in symptoms identified in this study indicates that existing testing and surveillance infrastructure do not need to change specifically for the B.1.1.7 variant. In addition, given that there was no apparent increase in the reinfection rate, vaccines are likely to remain effective against the B.1.1.7 variant. Funding Zoe Global, Department of Health (UK), Wellcome Trust, Engineering and Physical Sciences Research Council (UK), National Institute for Health Research (UK), Medical Research Council (UK), Alzheimer's Society

    A phase i study of muscadine grape skin extract in men with biochemically recurrent prostate cancer: Safety, tolerability, and dose determination

    No full text
    BACKGROUND New therapies are being explored as therapeutic options for men with biochemically recurrent prostate cancer (BRPC) who wish to defer androgen deprivation therapy. MPX is pulverized muscadine grape (Vitis rotundifolia) skin that contains ellagic acid, quercetin, and resveratrol and demonstrates preclinical activity against prostate cancer cells in vitro. METHODS In the phase I portion of this phase I/II study, non-metastatic BRPC patients were assigned to increasing doses of MPX (Muscadine Naturals. Inc., Clemmons, NC) in cohorts of two patients, with six patients at the highest dose, using a modified continual reassessment method. Initial dose selection was based on preclinical data showing the equivalent of 500 to 4,000mg of MPX to be safe in mouse models. The primary endpoint was the recommended phase II dosing regimen. RESULTS The cohort (n=14, 71% Caucasian, 29% black) had a median follow-up of 19.2 (6.2-29.7) months, median age of 61 years, and median Gleason score of 7. Four patients had possibly related gastrointestinal symptoms, including grade 1 flatulence, grade 1 soft stools, and grade 1 eructation. No other related adverse events were reported and one patient reported improvement of chronic constipation. Six of 14 patients came off study for disease progression (five metastatic, one rising PSA) after exposure for a median of 15 months. One patient came off for myasthenia gravis that was unrelated to treatment. Seven patients remain on study. The lack of dose-limiting toxicities led to the selection of 4,000mg/d as the highest dose for further study. Median within-patient PSADT increased by 5.3 months (non-significant, P=0.17). No patients experienced a maintained decline in serum PSA from baseline. CONCLUSION These data suggest that 4,000mg of MPX is safe, and exploratory review of a lengthening in PSADT of a median of 5.3 months supports further exploration of MPX. Both low-dose (500mg) and high-dose (4,000mg) MPX are being further investigated in a randomized, multicenter, placebo-controlled, dose-evaluating phase II trial. Prostate 75:1518-1525, 2015

    COVID-19 due to the B.1.617.2 (Delta) variant compared to B.1.1.7 (Alpha) variant of SARS-CoV-2: a prospective observational cohort study

    Get PDF
    The Delta (B.1.617.2) variant was the predominant UK circulating SARS-CoV-2 strain between May and December 2021. How Delta infection compares with previous variants is unknown. This prospective observational cohort study assessed symptomatic adults participating in the app-based COVID Symptom Study who tested positive for SARS-CoV-2 from May 26 to July 1, 2021 (Delta overwhelmingly the predominant circulating UK variant), compared (1:1, age- and sex-matched) with individuals presenting from December 28, 2020 to May 6, 2021 (Alpha (B.1.1.7) the predominant variant). We assessed illness (symptoms, duration, presentation to hospital) during Alpha- and Delta-predominant timeframes; and transmission, reinfection, and vaccine effectiveness during the Delta-predominant period. 3581 individuals (aged 18 to 100 years) from each timeframe were assessed. The seven most frequent symptoms were common to both variants. Within the first 28 days of illness, some symptoms were more common with Delta versus Alpha infection (including fever, sore throat, and headache) and some vice versa (dyspnoea). Symptom burden in the first week was higher with Delta versus Alpha infection; however, the odds of any given symptom lasting ≥ 7 days was either lower or unchanged. Illness duration ≥ 28 days was lower with Delta versus Alpha infection, though unchanged in unvaccinated individuals. Hospitalisation for COVID-19 was unchanged. The Delta variant appeared more (1.49) transmissible than Alpha. Re-infections were low in all UK regions. Vaccination markedly reduced the risk of Delta infection (by 69-84%). We conclude that COVID-19 from Delta or Alpha infections is similar. The Delta variant is more transmissible than Alpha; however, current vaccines showed good efficacy against disease. This research framework can be useful for future comparisons with new emerging variants
    corecore