104 research outputs found

    Influence of confinement on the orientational phase transitions in the lamellar phase of a block copolymer melt under shear flow

    Full text link
    In this work we incorporate some real-system effects into the theory of orientational phase transitions under shear flow (M. E. Cates and S. T. Milner, Phys. Rev. Lett. v.62, p.1856 (1989) and G. H. Fredrickson, J. Rheol. v.38, p.1045 (1994)). In particular, we study the influence of the shear-cell boundaries on the orientation of the lamellar phase. We predict that at low shear rates the parallel orientation appears to be stable. We show that there is a critical value of the shear rate at which the parallel orientation loses its stability and the perpendicular one appears immediately below the spinodal. We associate this transition with a crossover from the fluctuation to the mean-field behaviour. At lower temperatures the stability of the parallel orientation is restored. We find that the region of stability of the perpendicular orientation rapidly decreases as shear rate increases. This behaviour might be misinterpreted as an additional perpendicular to parallel transition recently discussed in literature.Comment: 25 pages, 4 figures, submitted to Phys. Rev.

    Weak Segregation Theory and Non-Conventional Morphologies in the Ternary ABC Triblock Copolymers

    Full text link
    The Leibler weak segregation theory in molten diblock copolymers is generalized with due regard for the 2nd shell harmonics contributions defined in the paper and the phase diagrams are built for the linear and miktoarm ternary ABC triblock copolymers. The symmetric linear copolymers with the middle block non-selective with respect to the side ones are shown to undergo the continuous ODT not only into the lamellar phase but also into various non-conventional cubic phases (depending on the middle block composition it could be the simple cubic, face-centered cubic or non-centrosymmetric phase revealing the symmetry of space group No.214 first predicted to appear in molten block copolymers). For asymmetric linear ABC copolymers a region of compositions is found where the weakly segregated gyroid (double gyroid) phase exists between the planar hexagonal and lamellar or one of the non-conventional cubic phases up to the very critical point. In contrast, the miktoarm ABC block copolymers with one of its arm non-selective with respect to the two others are shown to reveal a pronounced tendency towards strong segregation, which is preceded by increase of stability of the conventional BCC phase and a peculiar weakly segregated BCC phase (BCC3), where the dominant harmonics belong to the 3rd co-ordination sphere of the reciprocal lattice. The validity region of the developed theory is discussed and outlined in the composition triangles both for linear and miktoarm copolymers.Comment: 61 pages, 12 figure
    • …
    corecore