28,425 research outputs found

    The answers are within me. An evaluation of a person centred counselling service for men at HMP Doncaster who have had experience of domestic violence 2005-2007

    Get PDF
    This report is the second year evaluation of the person centred counselling service for male victims and perpetrators of domestic violence at HMP Doncaster in 2006/7. This report follows on from the previous year's evaluation, Raging Anger Within Me, which evaluated this project in 2005/6. Initiated by the Doncaster Rape and Sexual Abuse Counselling Centre (DRSACC), the second year of counselling service delivery was also funded by Lloyds TSB and the Tudor Trust. The report provides a background to the service offered, details the key factors in the service's success and makes recommendations for the future sustainability of this innovative service. The report also contains a particularly interesting section detailing how the appropriateness of the service is perceived by experienced prison staff

    Field-guided proton acceleration at reconnecting X-points in flares

    Get PDF
    An explicitly energy-conserving full orbit code CUEBIT, developed originally to describe energetic particle effects in laboratory fusion experiments, has been applied to the problem of proton acceleration in solar flares. The model fields are obtained from solutions of the linearised MHD equations for reconnecting modes at an X-type neutral point, with the additional ingredient of a longitudinal magnetic field component. To accelerate protons to the highest observed energies on flare timescales, it is necessary to invoke anomalous resistivity in the MHD solution. It is shown that the addition of a longitudinal field component greatly increases the efficiency of ion acceleration, essentially because it greatly reduces the magnitude of drift motions away from the vicinity of the X-point, where the accelerating component of the electric field is largest. Using plasma parameters consistent with flare observations, we obtain proton distributions extending up to gamma-ray-emitting energies (>1MeV). In some cases the energy distributions exhibit a bump-on-tail in the MeV range. In general, the shape of the distribution is sensitive to the model parameters.Comment: 14 pages, 4 figures, accepted for publication in Solar Physic

    Control of the persistent currents in two interacting quantum rings through the Coulomb interaction and inter-ring tunneling

    Full text link
    The persistent current in two vertically coupled quantum rings containing few electrons is studied. We find that the Coulomb interaction between the rings in the absence of tunneling affects the persistent current in each ring and the ground state configurations. Quantum tunneling between the rings alters significantly the ground state and the persistent current in the system.Comment: accepted for publication in Phys. Rev.

    Linking Ultracold Polar Molecules

    Get PDF
    We predict that pairs of polar molecules can be weakly bound together in an ultracold environment, provided that a dc electric field is present. The field that links the molecules together also strongly influences the basic properties of the resulting dimer, such as its binding energy and predissociation lifetime. Because of their long-range character these dimers will be useful in disentangling cold collision dynamics of polar molecules. As an example, we estimate the microwave photoassociation yield for OH-OH cold collisions.Comment: 4 pages 2 figure

    Fidelity for imperfect postselection

    Full text link
    We describe a simple measure of fidelity for mixed state postselecting devices. The measure is most appropriate for postselection where the task performed by the output is only effected by a specific state.Comment: 8 Pages, 8 Figure

    Light Assisted Collisional Loss in a 85/87^{85/87}Rb Ultracold Optical Trap

    Full text link
    We have studied hetero- and homonuclear excited state/ground state collisions by loading both 85^{85}Rb and 87^{87}Rb into a far off resonant trap (FORT). Because of the relatively weak confinement of the FORT, we expect the hyperfine structure of the different isotopes to play a crucial role in the collision rates. This dependence on hyperfine structure allows us to measure collisions associated with long range interatomic potentials of different structure: such as long and short ranged; or such as purely attractive, purely repulsive, or mixed attractive and repulsive. We observe significantly different loss rates for different excited state potentials. Additionally, we observe that some collisional channels' loss rates are saturated at our operating intensities (~15 mW/cm2^{2}). These losses are important limitations in loading dual isotope optical traps.Comment: about 8 pages, 5 figure

    Artificial molecular quantum rings: Spin density functional theory calculations

    Full text link
    The ground states of artificial molecules made of two vertically coupled quantum rings are studied within the spin density functional theory for systems containing up to 13 electrons. Quantum tunneling effects on the electronic structure of the coupled rings are analyzed. For small ring radius, our results recover those of coupled quantum dots. For intermediate and large ring radius, new phases are found showing the formation of new diatomic artificial ring molecules. Our results also show that the tunneling induced phase transitions in the coupled rings occur at much smaller tunneling energy as compared to those for coupled quantum dot systems.Comment: 10 pages, 6 figure

    Non-ancient solution of the Ricci flow

    Full text link
    For any complete noncompact Ka¨\ddot{a}hler manifold with nonnegative and bounded holomorphic bisectional curvature,we provide the necessary and sufficient condition for non-ancient solution to the Ricci flow in this paper.Comment: seven pages, latex fil

    Observation of the Kondo Effect in a Spin-3/2 Hole Quantum Dot

    Full text link
    We report the observation of Kondo physics in a spin- 3/2 hole quantum dot. The dot is formed close to pinch-off in a hole quantum wire defined in an undoped AlGaAs/GaAs heterostructure. We clearly observe two distinctive hallmarks of quantum dot Kondo physics. First, the Zeeman spin-splitting of the zero-bias peak in the differential conductance is independent of gate voltage. Second, this splitting is twice as large as the splitting for the lowest one-dimensional subband. We show that the Zeeman splitting of the zero-bias peak is highly-anisotropic, and attribute this to the strong spin-orbit interaction for holes in GaAs.Comment: 4 pages, 4 figure
    corecore