949 research outputs found

    Biochar Supplementation in Growing and Finishing Diets

    Get PDF
    Two metabolism studies were conducted to evaluate the effects of biochar (0, 0.8, or 3% of diet dry matter) on digestibility and methane production in growing and finishing diets. Intake was not affected by biochar inclusion in the growing diet and increased with 0.8% biochar inclusion in the finishing study. Digestibility tended to increase quadratically with biochar inclusion in the growing study while digestibility tended to linearly decrease with biochar inclusion in the finishing study. Methane production (g/d) decreased 10.7% in the growing study and 9.9% in the finishing study with 0.8% biochar compared to no biochar. Methane production was reduced 10.6% and 18.4% in the growing and finishing studies, respectively, when measured as g/lb of intake. Although biochar is not FDA approved for animal feeding, the initial research shows potential as a methane mitigation strategy in both growing and finishing diets

    Nonperturbative harmonic generation in graphene from intense midinfrared pulsed light

    Get PDF
    In solids, high harmonic radiation arises from the subcycle dynamics of electrons and holes under the action of an intense laser field. The strong-field regime opens new opportunities to understand and control carrier dynamics on ultrafast time scales, including the coherent dynamics of quasiparticles such as massless Dirac fermions. Here, we irradiate monolayer and few-layer graphene with intense infrared light to produce nonperturbative harmonics of the fundamental up to the seventh order. We find that the polarization dependence shows surprising agreement with gas-phase harmonics. Using a two-band model, we explore the nonlinear current due to electrons near the Dirac points, and we discuss the interplay between intraband and interband contributions to the harmonic spectrum. This interplay opens new opportunities to access ultrafast and strong-field physics of graphene.Peer reviewed: YesNRC publication: Ye

    Enhancing Mental and Physical Health of Women through Engagement and Retention (EMPOWER): a protocol for a program of research

    Get PDF
    Abstract Background The Enhancing Mental and Physical health of Women through Engagement and Retention or EMPOWER program represents a partnership with the US Department of Veterans Health Administration (VA) Health Service Research and Development investigators and the VA Office of Women’s Health, National Center for Disease Prevention and Health Promotion, Primary Care-Mental Health Integration Program Office, Women’s Mental Health Services, and the Office of Patient Centered Care and Cultural Transformation. EMPOWER includes three projects designed to improve women Veterans’ engagement and retention in evidence-based care for high-priority health conditions, i.e., prediabetes, cardiovascular, and mental health. Methods/Design The three proposed projects will be conducted in VA primary care clinics that serve women Veterans including general primary care and women’s health clinics. The first project is a 1-year quality improvement project targeting diabetes prevention. Two multi-site research implementation studies will focus on cardiovascular risk prevention and collaborative care to address women Veterans’ mental health treatment needs respectively. All projects will use the evidence-based Replicating Effective Programs (REP) implementation strategy, enhanced with multi-stakeholder engagement and complexity theory. Mixed methods implementation evaluations will focus on investigating primary implementation outcomes of adoption, acceptability, feasibility, and reach. Program-wide organizational-, provider-, and patient-level measures and tools will be utilized to enhance synergy, productivity, and impact. Both implementation research studies will use a non-randomized stepped wedge design. Discussion EMPOWER represents a coherent program of women’s health implementation research and quality improvement that utilizes cross-project implementation strategies and evaluation methodology. The EMPOWER Quality Enhancement Research Initiative (QUERI) will constitute a major milestone for realizing women Veterans’ engagement and empowerment in the VA system. EMPOWER QUERI will be conducted in close partnership with key VA operations partners, such as the VA Office of Women’s Health, to disseminate and spread the programs nationally. Trial registration The two implementation research studies described in this protocol have been registered as required: Facilitating Cardiovascular Risk Screening and Risk Reduction in Women Veterans: Trial registration NCT02991534 , registered 9 December 2016. Implementation of Tailored Collaborative Care for Women Veterans: Trial registration NCT02950961 , registered 21 October 2016

    Undergraduate Biology Education Research Gordon Research Conference: A Meeting Report

    Get PDF
    The 2019 Undergraduate Biology Education Research Gordon Research Conference (UBER GRC), titled “Achieving Widespread Improvement in Undergraduate Education,” brought together a diverse group of researchers and practitioners working to identify, promote, and understand widespread adoption of evidence-based teaching, learning, and success strategies in undergraduate biology. Graduate students and postdocs had the additional opportunity to present and discuss research during a Gordon Research Seminar (GRS) that preceded the GRC. This report provides a broad overview of the UBER GRC and GRS and highlights major themes that cut across invited talks, poster presentations, and informal discussions. Such themes include the importance of working in teams at multiple levels to achieve instructional improvement, the potential to use big data and analytics to inform instructional change, the need to customize change initiatives, and the importance of psychosocial supports in improving undergraduate student well-being and academic success. The report also discusses the future of the UBER GRC as an established meeting and describes aspects of the conference that make it unique, both in terms of facilitating dissemination of research and providing a welcoming environment for conferees

    Friends and Foes from an Ant Brain's Point of View – Neuronal Correlates of Colony Odors in a Social Insect

    Get PDF
    Background: Successful cooperation depends on reliable identification of friends and foes. Social insects discriminate colony members (nestmates/friends) from foreign workers (non-nestmates/foes) by colony-specific, multi-component colony odors. Traditionally, complex processing in the brain has been regarded as crucial for colony recognition. Odor information is represented as spatial patterns of activity and processed in the primary olfactory neuropile, the antennal lobe (AL) of insects, which is analogous to the vertebrate olfactory bulb. Correlative evidence indicates that the spatial activity patterns reflect odor-quality, i.e., how an odor is perceived. For colony odors, alternatively, a sensory filter in the peripheral nervous system was suggested, causing specific anosmia to nestmate colony odors. Here, we investigate neuronal correlates of colony odors in the brain of a social insect to directly test whether they are anosmic to nestmate colony odors and whether spatial activity patterns in the AL can predict how odor qualities like ‘‘friend’’ and ‘‘foe’’ are attributed to colony odors. Methodology/Principal Findings: Using ant dummies that mimic natural conditions, we presented colony odors and investigated their neuronal representation in the ant Camponotus floridanus. Nestmate and non-nestmate colony odors elicited neuronal activity: In the periphery, we recorded sensory responses of olfactory receptor neurons (electroantennography), and in the brain, we measured colony odor specific spatial activity patterns in the AL (calcium imaging). Surprisingly, upon repeated stimulation with the same colony odor, spatial activity patterns were variable, and as variable as activity patterns elicited by different colony odors. Conclusions: Ants are not anosmic to nestmate colony odors. However, spatial activity patterns in the AL alone do not provide sufficient information for colony odor discrimination and this finding challenges the current notion of how odor quality is coded. Our result illustrates the enormous challenge for the nervous system to classify multi-component odors and indicates that other neuronal parameters, e.g., precise timing of neuronal activity, are likely necessary for attribution of odor quality to multi-component odors

    Cerebral blood flow response to simulated hypovolemia in essential hypertension a magnetic resonance imaging study

    Get PDF
    Hypertension is associated with raised cerebral vascular resistance and cerebrovascular remodeling. It is currently unclear whether the cerebral circulation can maintain cerebral blood flow (CBF) during reductions in cardiac output (CO) in hypertensive patients thereby avoiding hypoperfusion of the brain. We hypothesized that hypertension would impair the ability to effectively regulate CBF during simulated hypovolemia. In the present study, 39 participants (13 normotensive, 13 controlled, and 13 uncontrolled hypertensives; mean age±SD, 55±10 years) underwent lower body negative pressure (LBNP) at -20, -40, and -50 mmHg to decrease central blood volume. Phase-contrast MR angiography was used to measure flow in the basilar and internal carotid arteries, as well as the ascending aorta. CBF and CO decreased during LBNP (P<0.0001). Heart rate increased during LBNP, reaching significance at -50 mmHg (P<0.0001). There was no change in mean arterial pressure during LBNP (P=0.3). All participants showed similar reductions in CBF (P=0.3, between groups) and CO (P=0.7, between groups) during LBNP. There was no difference in resting CBF between the groups (P=0.36). In summary, during reductions in CO induced by hypovolemic stress, mean arterial pressure is maintained but CBF declines indicating that CBF is dependent on CO in middle-aged normotensive and hypertensive volunteers. Hypertension is not associated with impairments in the CBF response to reduced CO

    Assessment of motor functioning in the preschool period

    Get PDF
    The assessment of motor functioning in young children has become increasingly important in recent years with the acknowledgement that motor impairment is linked with cognitive, language, social and emotional difficulties. However, there is no one gold standard assessment tool to investigate motor ability in children. The aim of the current paper was to discuss the issues related to the assessment of motor ability in young pre-school children and to provide guidelines on the best approach for motor assessment. The paper discusses the maturational changes in brain development at the preschool level in relation to motor ability. Other issues include sex differences in motor ability at this young age, and evidence for this in relation to sociological versus biological influences. From the previous literature it is unclear what needs to be assessed in relation to motor functioning. Should the focus be underlying motor processes or movement skill assessment? Several key assessment tools are discussed that produce a general measure of motor performance followed by a description of tools that assess specific skills, such as fine and gross motor, ball and graphomotor skills. The paper concludes with recommendations on the best approach in assessing motor function in pre-school children

    The Pediatric Cell Atlas:Defining the Growth Phase of Human Development at Single-Cell Resolution

    Get PDF
    Single-cell gene expression analyses of mammalian tissues have uncovered profound stage-specific molecular regulatory phenomena that have changed the understanding of unique cell types and signaling pathways critical for lineage determination, morphogenesis, and growth. We discuss here the case for a Pediatric Cell Atlas as part of the Human Cell Atlas consortium to provide single-cell profiles and spatial characterization of gene expression across human tissues and organs. Such data will complement adult and developmentally focused HCA projects to provide a rich cytogenomic framework for understanding not only pediatric health and disease but also environmental and genetic impacts across the human lifespan

    Morphology and Composition of the Surface of Mars: Mars Odyssey THEMIS Results

    Get PDF
    The Thermal Emission Imaging System (THEMIS) on Mars Odyssey has produced infrared to visible wavelength images of the martian surface that show lithologically distinct layers with variable thickness, implying temporal changes in the processes or environments during or after their formation. Kilometer-scale exposures of bedrock are observed; elsewhere airfall dust completely mantles the surface over thousands of square kilometers. Mars has compositional variations at 100-meter scales, for example, an exposure of olivine-rich basalt in the walls of Ganges Chasma. Thermally distinct ejecta facies occur around some craters with variations associated with crater age. Polar observations have identified temporal patches of water frost in the north polar cap. No thermal signatures associated with endogenic heat sources have been identified
    • 

    corecore