34 research outputs found
Barcode Annotations for Medical Image Retrieval: A Preliminary Investigation
This paper proposes to generate and to use barcodes to annotate medical
images and/or their regions of interest such as organs, tumors and tissue
types. A multitude of efficient feature-based image retrieval methods already
exist that can assign a query image to a certain image class. Visual
annotations may help to increase the retrieval accuracy if combined with
existing feature-based classification paradigms. Whereas with annotations we
usually mean textual descriptions, in this paper barcode annotations are
proposed. In particular, Radon barcodes (RBC) are introduced. As well, local
binary patterns (LBP) and local Radon binary patterns (LRBP) are implemented as
barcodes. The IRMA x-ray dataset with 12,677 training images and 1,733 test
images is used to verify how barcodes could facilitate image retrieval.Comment: To be published in proceedings of The IEEE International Conference
on Image Processing (ICIP 2015), September 27-30, 2015, Quebec City, Canad
On Being Religious
The question of religion, in one form or another, has been with us humans for millennia. From primitive tribal ceremonies to highly organized scriptures and theological rule books, up to excruciatingly circumlocutory philosophical treatises, we - Homo sapiens - have attempted to answer the question of religion through ages. Perhaps the most paramount question is whether religion is a real phenomenon that exists outside of us or whether we have invented it. If we have constructed the concept of religion, then our understanding of religion and any action emerging from it would be about us, humans, would it not? If religion is true|something of substance that exists outside and beyond humanity|then
we are, as sentient beings with consciousness, mere explorers and we cannot be its inventors, can we? What does this mean? Does this mean there could be no religion without human involvement? Does this mean religion can only manifest itself in a human-centric universe? If so, why is that
Learning Opposites with Evolving Rules
The idea of opposition-based learning was introduced 10 years ago. Since then
a noteworthy group of researchers has used some notions of oppositeness to
improve existing optimization and learning algorithms. Among others,
evolutionary algorithms, reinforcement agents, and neural networks have been
reportedly extended into their opposition-based version to become faster and/or
more accurate. However, most works still use a simple notion of opposites,
namely linear (or type- I) opposition, that for each assigns its
opposite as . This, of course, is a very naive estimate of
the actual or true (non-linear) opposite , which has been
called type-II opposite in literature. In absence of any knowledge about a
function that we need to approximate, there seems to be no
alternative to the naivety of type-I opposition if one intents to utilize
oppositional concepts. But the question is if we can receive some level of
accuracy increase and time savings by using the naive opposite estimate
according to all reports in literature, what would we be able to
gain, in terms of even higher accuracies and more reduction in computational
complexity, if we would generate and employ true opposites? This work
introduces an approach to approximate type-II opposites using evolving fuzzy
rules when we first perform opposition mining. We show with multiple examples
that learning true opposites is possible when we mine the opposites from the
training data to subsequently approximate .Comment: Accepted for publication in The 2015 IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE 2015), August 2-5, 2015, Istanbul, Turke
Gabor Barcodes for Medical Image Retrieval
In recent years, advances in medical imaging have led to the emergence of
massive databases, containing images from a diverse range of modalities. This
has significantly heightened the need for automated annotation of the images on
one side, and fast and memory-efficient content-based image retrieval systems
on the other side. Binary descriptors have recently gained more attention as a
potential vehicle to achieve these goals. One of the recently introduced binary
descriptors for tagging of medical images are Radon barcodes (RBCs) that are
driven from Radon transform via local thresholding. Gabor transform is also a
powerful transform to extract texture-based information. Gabor features have
exhibited robustness against rotation, scale, and also photometric
disturbances, such as illumination changes and image noise in many
applications. This paper introduces Gabor Barcodes (GBCs), as a novel framework
for the image annotation. To find the most discriminative GBC for a given query
image, the effects of employing Gabor filters with different parameters, i.e.,
different sets of scales and orientations, are investigated, resulting in
different barcode lengths and retrieval performances. The proposed method has
been evaluated on the IRMA dataset with 193 classes comprising of 12,677 x-ray
images for indexing, and 1,733 x-rays images for testing. A total error score
as low as ( accuracy for the first hit) was achieved.Comment: To appear in proceedings of The 2016 IEEE International Conference on
Image Processing (ICIP 2016), Sep 25-28, 2016, Phoenix, Arizona, US