7 research outputs found

    Tension of knotted surgical sutures shows tissue specific rapid loss in a rodent model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Every surgical suture compresses the enclosed tissue with a tension that depends from the knotting force and the resistance of the tissue. The aim of this study was to identify the dynamic change of applied suture tension with regard to the tissue specific cutting reaction.</p> <p>Methods</p> <p>In rabbits we placed single polypropylene sutures (3/0) in skin, muscle, liver, stomach and small intestine. Six measurements for each single organ were determined by tension sensors for 60 minutes. We collected tissue specimens to analyse the connective tissue stability by measuring the collagen/protein content.</p> <p>Results</p> <p>We identified three phases in the process of suture loosening. The initial rapid loss of the first phase lasts only one minute. It can be regarded as cutting through damage of the tissue. The percentage of lost tension is closely related to the collagen content of the tissue (r = -0.424; p = 0.016). The second phase is characterized by a slower decrease of suture tension, reflecting a tissue specific plastic deformation. Phase 3 is characterized by a plateau representing the remaining structural stability of the tissue. The ratio of remaining tension to initial tension of phase 1 is closely related to the collagen content of the tissue (r = 0.392; p = 0.026).</p> <p>Conclusions</p> <p>Knotted non-elastic monofilament sutures rapidly loose tension. The initial phase of high tension may be narrowed by reduction of the surgeons' initial force of the sutures' elasticity to those of the tissue. Further studies have to confirm, whether reduced tissue compression and less local damage permits improved wound healing.</p

    In vivo imaging of antioxidant response element activity during liver regeneration after partial hepatectomy

    No full text
    The nuclear factor-erythroid 2-related factor 2 (Nrf2) -antioxidant response element (ARE) pathway is important for the regulation of antioxidative stress response and detoxification. To activate the expression of its target genes, such as heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase (quinone) 1 (NQO1), Nrf2 binds to the ARE within the promoter region of these genes. Partial hepatectomy and consecutive liver regeneration lead to oxidative stress with activation of the Nrf2-ARE pathway. The aim of this study was to investigate ARE activity in?vivo during liver regeneration after partial hepatectomy.Transgenic ARE-luc mice were used. In these mice, the luciferase reporter gene is under the control of an ARE promoter element. Following 2/3 partial hepatectomy (PHx), mice underwent in?vivo bioluminescence imaging up until the ninth postoperative day. In addition, liver tissue was analyzed by immunohistochemistry (Nrf2 and HO-1), quantitative reverse transcription-PCR (HO-1 and NQO1) and in?vitro luminescence assays.Bioluminescence imaging revealed a significant increase in Nrf2-ARE activity after PHx. The signal maximum was recorded on the third day after PHx. Seven days postoperatively, the signal almost reached baseline levels. In immunohistochemistry, significantly more hepatocytes were positive for Nrf2 and HO-1 on the third postoperative day compared with baseline levels. The mRNA expression of HO-1 and NQO1 were significantly increased on day 3 as measured by qRT-PCR.This study demonstrated the time-dependent activation of the Nrf2-ARE system during liver regeneration in?vivo. The transgenic ARE-luc mouse provided a convenient model for studying Nrf2-mediated gene expression noninvasively and may facilitate further experiments with therapeutic modulation of the antioxidative stress response
    corecore