14 research outputs found

    Synthesis, in vitro antifungal evaluation and in silico study of 3-azolyl-4-chromanone phenylhydrazones

    Get PDF
    BACKGROUND: The currently available antifungal drugs suffer from toxicity, greatest potential drug interactions with other drugs, insufficient pharmacokinetics properties, and development of resistance. Thus, development of new antifungal agents with optimum pharmacokinetics and less toxicity is urgent task. In the search for new azole antifungals, we have been previously described azolylchromanone oxime ethers as rigid analogs of oxiconazole. In continuation of our work, we incorporated phenylhydrazone moiety instead of oxime ether fragment in azolylchromanone derivatives. METHODS: The 3-azolyl-4-chromanone phenylhydrazones were synthesized via ring closure of 2-azolyl-2'-hydroxyacetophenones and subsequent reaction with phenylhydrazine. The biological activity of title compounds was evaluated against different pathogenic fungi including Candida albicans, Saccharomyces cerevisiae, Aspergillus niger, and Microsporum gypseum. Docking study, in silico toxicity risks and drug-likeness predictions were used to better define of title compounds as antifungal agents. RESULTS: The in vitro antifungal activity of compounds based on MIC values revealed that all compounds showed good antifungal activity against C. albicans, S. cerevisiae and M. gypseum at concentrations less than 16 μg/mL. Among the test compounds, 2-methyl-3-imidazolyl derivative 3b showed the highest values of drug-likeness and drug-score. CONCLUSION: The 3-azolyl-4-chromanone phenylhydrazones considered as analogs of 3-azolyl-4-chromanone oxime ethers basically designed as antifungal agents. The antifungal activity of title compounds was comparable to that of standard drug fluconazole. The drug-likeness data of synthesized compounds make them promising leads for future development of antifungal agents

    Discovery of Chalcone-Based Hybrid Structures as High Affinity and Site-Specific Inhibitors against SARS-CoV-2: A Comprehensive Structural Analysis Based on Various Host-Based and Viral Targets

    Get PDF
    Previous studies indicated that natural-based chalcones have significant inhibitory effects on the coronavirus enzymes 3CLpro and PLpro as well as modulation of some host-based antiviral targets (HBATs). In this study, a comprehensive computational and structural study was performed to investigate the affinity of our compound library consisting of 757 chalcone-based structures (CHA-1 to CHA-757) for inhibiting the 3CLpro and PLpro enzymes and against twelve selected host-based targets. Our results indicated that CHA-12 (VUF 4819) is the most potent and multi-target inhibitor in our chemical library over all viral and host-based targets. Correspondingly, CHA-384 and its congeners containing ureide moieties were found to be potent and selective 3CLpro inhibitors, and benzotriazole moiety in CHA-37 was found to be a main fragment for inhibiting the 3CLpro and PLpro. Surprisingly, our results indicate that the ureide and sulfonamide moieties are integral fragments for the optimum 3CLpro inhibition while occupying the S1 and S3 subsites, which is fully consistent with recent reports on the site-specific 3CLpro inhibitors. Finding the multi-target inhibitor CHA-12, previously reported as an LTD4 antagonist for the treatment of inflammatory pulmonary diseases, prompted us to suggest it as a concomitant agent for relieving respiratory symptoms and suppressing COVID-19 infection

    Dual action anti-inflammatory/antiviral isoquinoline alkaloids as potent naturally occurring anti-SARS-CoV-2 agents: A combined pharmacological and medicinal chemistry perspective

    No full text
    In the search for compounds that inhibit the SARS-CoV-2 after the onset of the COVID-19 pandemic, isoquinoline-containing alkaloids have been identified as compounds with high potential to fight the disease. In addition to having strong antiviral activities, most of these alkaloids have significant anti-inflammatory effects which are often manifested through the inhibition of a promising host-based anti-COVID-19 target, the p38 MAPK signaling pathway. In the present review, our pharmacological and medicinal chemistry evaluation resulted in highlighting the potential of anti-SARS-CoV-2 isoquinoline-based alkaloids for the treatment of COVID-19 patients. Considering critical parameters of the antiviral and anti-inflammatory activities, mechanism of action, as well as toxicity/safety profile, we introduce the alkaloids emetine, cephaeline, and papaverine as high-potential therapeutic agents for use in the treatment of COVID-19. Although preclinical studies confirm that some isoquinoline-based alkaloids reviewed in this study have a high potential to inhibit the SARS-CoV-2, their entry into drug regimens of COVID-19 patients requires further clinical trial studies and toxicity evaluation

    Benzoindolizidine Alkaloids Tylophorine and Lycorine and Their Analogues with Antiviral, Anti-Inflammatory, and Anticancer Properties: Promises and Challenges

    No full text
    Ongoing viral research, essential for public health due to evolving viruses, gains significance owing to emerging viral infections such as the SARS-CoV-2 pandemic. Marine and plant alkaloids show promise as novel potential pharmacological strategies. In this narrative review, we elucidated the potential of tylophorine and lycorine, two naturally occurring plant-derived alkaloids with a shared benzoindolizidine scaffold, as antiviral agents to be potentially harnessed against respiratory viral infections. Possible structure-activity relationships have also been highlighted. The substances and their derivatives were found to be endowed with powerful and broad-spectrum antiviral properties; moreover, they were able to counteract inflammation, which often underpins the complications of viral diseases. At last, their anticancer properties hold promise not only for advancing cancer research but also for mitigating the oncogenic effects of viruses. This evidence suggests that tylophorine and lycorine could effectively counteract the pathogenesis of respiratory viral disease and its harmful effects. Although common issues about the pharmacologic development of natural substances remain to be addressed, the collected evidence highlights a possible interest in tylophorine and lycorine as antiviral and/or adjuvant strategies and encourages future more in-depth pre-clinical and clinical investigations to overcome their drawbacks and harness their power for therapeutic purposes

    The Neuroprotective Effect of a Triazine Derivative in an Alzheimer's Rat Model

    No full text
    Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder. It is characterized by formation of amyloid plaques and neurofibrillary tangles in the brain, degeneration of the cholinergic neurons and neural cell death. This study was aimed to investigate the effect of a triazine derivative, C16H12Cl2N3S, on learning in an Alzheimer's rat model. Animals were divided into seven groups; each group contained seven animals.animals received no surgery and treatment; saline group: animals received normal saline after recovery; sham group: animals received 10% DMSO after recovery; STZ group (Alzheimer's model): animals received streptozotocin (STZ) in four and six days after recovery; T5, T10 and T15 groups: animals were treated with triazine derivative, C16H12Cl2N3S, at doses of 5, 10 and 15 µM, respectively. All drugs were injected intracerebroventricular. The spatial learning and histological assessment were performed in all groups. Animals in STZ group had more deficits in spatial learning than the control group in Morris water maze. C16H12Cl2N3S improved spatial learning significantly compared to STZ group. The CA1 pyramidal layer thicknesses in STZ group were reduced significantly compared to control group. C16H12Cl2N3S increased the CA1 pyramidal layer thickness in T15 group compared to STZ group. Current findings suggest C16H12Cl2N3S may have a protective effect on learning deficit and hippocampal structure in AD
    corecore