1 research outputs found

    Study IR- Raman Spectra properties of Aluminium Phosphide Diamondoids Nanostructures via DFT

    No full text
    Density Functional Theory has been utilized to investigate the electronic and structural characteristics of Aluminium phosphide (AlP). The exchange-correlation potential was calculated using the Generalized Gradient Approximation. The structural, electronic and vibrational features of AlP diamondoids and nanocrystals were investigated using Density Functional Theory at the PBE/6-31(d) level, which included polarization functions. Vibrational modes have been optimized concerning IR intensity, force constants, and lowered masses. In this study there are two components to the vibrational force constant for AlP diamondoids. The first one is distinguished by a reduced mass that is greater than 1 amu and consists primarily of Al-P vibrations that are positioned roughly between 0 and 231 cm-1. The second component has a decreased mass very near to 1 amu and is in the 1228–2400 cm–1 range. It is entirely made up of hydrogen vibrational modes. AlP diamondoids were evaluated with the results of experimental bulk in terms of molecular size-related changes in allocated vibrational frequencies
    corecore