5,555 research outputs found

    Critical and off-critical studies of the Baxter-Wu model with general toroidal boundary conditions

    Full text link
    The operator content of the Baxter-Wu model with general toroidal boundary conditions is calculated analytically and numerically. These calculations were done by relating the partition function of the model with the generating function of a site-colouring problem in a hexagonal lattice. Extending the original Bethe-ansatz solution of the related colouring problem we are able to calculate the eigenspectra of both models by solving the associated Bethe-ansatz equations. We have also calculated, by exploring the conformal invariance at the critical point, the mass ratios of the underlying massive theory governing the Baxter-Wu model in the vicinity of its critical point.Comment: 32 pages latex, to appear in J. Phys. A: Math. Ge

    A closer look at symmetry breaking in the collinear phase of the J1−J2J_1-J_2 Heisenberg Model

    Full text link
    The large J2J_2 limit of the square-lattice J1−J2J_1-J_2 Heisenberg antiferromagnet is a classic example of order by disorder where quantum fluctuations select a collinear ground state. Here, we use series expansion methods and a meanfield spin-wave theory to study the excitation spectra in this phase and look for a finite temperature Ising-like transition, corresponding to a broken symmetry of the square-lattice, as first proposed by Chandra et al. (Phys. Rev. Lett. 64, 88 (1990)). We find that the spectra reveal the symmetries of the ordered phase. However, we do not find any evidence for a finite temperature phase transition. Based on an effective field theory we argue that the Ising-like transition occurs only at zero temperature.Comment: 4 pages and 5 figure

    Conformal invariance studies of the Baxter-Wu model and a related site-colouring problem

    Full text link
    The partition function of the Baxter-Wu model is exactly related to the generating function of a site-colouring problem on a hexagonal lattice. We extend the original Bethe ansatz solution of these models in order to obtain the eigenspectra of their transfer matrices in finite geometries and general toroidal boundary conditions. The operator content of these models are studied by solving numerically the Bethe-ansatz equations and by exploring conformal invariance. Since the eigenspectra are calculated for large lattices, the corrections to finite-size scaling are also calculated.Comment: 12 pages, latex, to appear in J. Phys. A: Gen. Mat

    Critical Behaviour of Mixed Heisenberg Chains

    Full text link
    The critical behaviour of anisotropic Heisenberg models with two kinds of antiferromagnetically exchange-coupled centers are studied numerically by using finite-size calculations and conformal invariance. These models exhibit the interesting property of ferrimagnetism instead of antiferromagnetism. Most of our results are centered in the mixed Heisenberg chain where we have at even (odd) sites a spin-S (S') SU(2) operator interacting with a XXZ like interaction (anisotropy Δ\Delta). Our results indicate universal properties for all these chains. The whole phase, 1>Δ>−11>\Delta>-1, where the models change from ferromagnetic (Δ=1)( \Delta=1 ) to ferrimagnetic (Δ=−1)(\Delta=-1) behaviour is critical. Along this phase the critical fluctuations are ruled by a c=1 conformal field theory of Gaussian type. The conformal dimensions and critical exponents, along this phase, are calculated by studying these models with several boundary conditions.Comment: 21 pages, standard LaTex, to appear in J.Phys.A:Math.Ge

    Eikonal Regge Model for Elastic Scattering Processes

    Get PDF
    The Frautschi-Margolis version of the Regge eikonal model is extended to include secondary Regge trajectories. Physical properties of the model are discussed. In particular, the "shrinkage" of dσ/dt observed at present energies (rapid shrinkage for pp and K+p, little or no shrinkage for π±p and K-p, antishrinkage for pp is related to the energy dependence of σtot pp and K+p nearly flat, π±p and K-p falling slowly, pp falling rapidly)

    A New Finite-lattice study of the Massive Schwinger Model

    Get PDF
    A new finite lattice calculation of the low lying bound state energies in the massive Schwinger model is presented, using a Hamiltonian lattice formulation. The results are compared with recent analytic series calculations in the low mass limit, and with a new higher order non-relativistic series which we calculate for the high mass limit. The results are generally in good agreement with these series predictions, and also with recent calculations by light cone and related techniques

    Path Integral Monte Carlo Approach to the U(1) Lattice Gauge Theory in (2+1) Dimensions

    Get PDF
    Path Integral Monte Carlo simulations have been performed for U(1) lattice gauge theory in (2+1) dimensions on anisotropic lattices. We extractthe static quark potential, the string tension and the low-lying "glueball" spectrum.The Euclidean string tension and mass gap decrease exponentially at weakcoupling in excellent agreement with the predictions of Polyakov and G{\" o}pfert and Mack, but their magnitudes are five times bigger than predicted. Extrapolations are made to the extreme anisotropic or Hamiltonian limit, and comparisons are made with previous estimates obtained in the Hamiltonian formulation.Comment: 12 pages, 16 figure

    Hamiltonian Study of Improved U(1U(1 Lattice Gauge Theory in Three Dimensions

    Full text link
    A comprehensive analysis of the Symanzik improved anisotropic three-dimensional U(1) lattice gauge theory in the Hamiltonian limit is made. Monte Carlo techniques are used to obtain numerical results for the static potential, ratio of the renormalized and bare anisotropies, the string tension, lowest glueball masses and the mass ratio. Evidence that rotational symmetry is established more accurately for the Symanzik improved anisotropic action is presented. The discretization errors in the static potential and the renormalization of the bare anisotropy are found to be only a few percent compared to errors of about 20-25% for the unimproved gauge action. Evidence of scaling in the string tension, antisymmetric mass gap and the mass ratio is observed in the weak coupling region and the behaviour is tested against analytic and numerical results obtained in various other Hamiltonian studies of the theory. We find that more accurate determination of the scaling coefficients of the string tension and the antisymmetric mass gap has been achieved, and the agreement with various other Hamiltonian studies of the theory is excellent. The improved action is found to give faster convergence to the continuum limit. Very clear evidence is obtained that in the continuum limit the glueball ratio MS/MAM_{S}/M_{A} approaches exactly 2, as expected in a theory of free, massive bosons.Comment: 13 pages, 15 figures, submitted to Phys. Rev.

    Critical Behaviour of Structure Factors at a Quantum Phase Transition

    Full text link
    We review the theoretical behaviour of the total and one-particle structure factors at a quantum phase transition for temperature T=0. The predictions are compared with exact or numerical results for the transverse Ising model, the alternating Heisenberg chain, and the bilayer Heisenberg model. At the critical wavevector, the results are generally in accord with theoretical expectations. Away from the critical wavevector, however, different models display quite different behaviours for the one-particle residues and structure factors.Comment: 17 pp, 10 figure

    Density Matrix Renormalisation Group Approach to the Massive Schwinger Model

    Get PDF
    The massive Schwinger model is studied, using a density matrix renormalisation group approach to the staggered lattice Hamiltonian version of the model. Lattice sizes up to 256 sites are calculated, and the estimates in the continuum limit are almost two orders of magnitude more accurate than previous calculations. Coleman's picture of `half-asymptotic' particles at background field theta = pi is confirmed. The predicted phase transition at finite fermion mass (m/g) is accurately located, and demonstrated to belong in the 2D Ising universality class.Comment: 38 pages, 18 figures, submitted to PR
    • …
    corecore