57 research outputs found
Recommended from our members
Major and Minor Group Rhinoviruses Elicit Differential Signaling and Cytokine Responses as a Function of Receptor-Mediated Signal Transduction
Major- and minor-group human rhinoviruses (HRV) enter their host by binding to the cell surface molecules ICAM-1 and LDL-R, respectively, which are present on both macrophages and epithelial cells. Although epithelial cells are the primary site of productive HRV infection, previous studies have implicated macrophages in establishing the cytokine dysregulation that occurs during rhinovirus-induced asthma exacerbations. Analysis of the transcriptome of primary human macrophages exposed to major- and minor-group HRV demonstrated differential gene expression. Alterations in gene expression were traced to differential mitochondrial activity and signaling pathway activation between two rhinovirus serotypes, HRV16 (major-group) and HRV1A (minor-group), upon initial HRV binding. Variances in phosphorylation of kinases (p38, JNK, ERK5) and transcription factors (ATF-2, CREB, CEBP-alpha) were observed between the major- and minor-group HRV treatments. Differential activation of signaling pathways led to changes in the production of the asthma-relevant cytokines CCL20, CCL2, and IL-10. This is the first report of genetically similar viruses eliciting dissimilar cytokine release, transcription factor phosphorylation, and MAPK activation from macrophages, suggesting that receptor use is a mechanism for establishing the inflammatory microenvironment in the human airway upon exposure to rhinovirus
The human MyoD1 (MYF3) gene maps on the short arm of chromosome 11 but is not associated with the WAGR locus or the region for the Beckwith-Wiedemann syndrome
The human gene encoding the myogenic determination factor myf3 (mouse MyoD1) has been mapped to the short arm of chromosome 11. Analysis of several somatic cell hybrids containing various derivatives with deletions or translocations revealed that the human MyoD (MYF3) gene is not associated with the WAGR locus at chromosomal band 11pl3 nor with the loss of the heterozygosity region at 11p15.5 related to the Beckwith-Wiedemann syndrome. Subregional mapping by in situ hybridization with an myf3 specific probe shows that the gene resides at the chromosomal band llp14, possibly at llp14.3
c-myc and immunoglobulin kappa light chain constant genes are on the 8q+ chromosome of three Burkitt lymphoma lines with t(2;8) translocations.
We have determined the localization of c-myc and the immunoglobulin kappa light chain genes on the 8q+/2p- chromosomes of the three Burkitt lymphoma lines BL21, LY66 and LY91 with t(2;8) translocation by in situ hybridization. BL21 is characterized by a complex translocation in which a piece of chromosome 9 appears to be located between the fragments of chromosome 8 and 2 on the 8q+ chromosome. Our data indicate that in all three cell lines the c-myc gene is located on the 8q+ chromosome proximal to the breakpoint in band 8q24. In all cell lines examined the cluster of kappa variable genes has remained on the 2p- chromosome. In LY91 cells the major part of the joining region remained on 2p-, while the joining region has moved to 8q+ in the cell lines BL21 and LY66. In all three cell lines the constant kappa light chain gene was found on the 8q+ chromosome. The fact that an essentially identical pattern was found in the cell line BL21, with the complex translocation, suggests that the insertion of the piece of chromosome 9 into the 8q+ chromosome might be a secondary event. Our present data fit into the concept that in all Burkitt lymphoma lines investigated so far, including cases with t(8;14) and the variant translocations t(2;8) and t(8;22), the c-myc gene becomes situated at the 5' side of an immunoglobulin constant gene. This may have implications for the generation of somatic mutations in the coding and non-coding part of the c-myc gene
- …