33 research outputs found
Clinical Laboratory Testing Practices in Diffuse Gliomas Prior to Publication of 2021 World Health Organization Classification of Central Nervous System Tumors
CONTEXT.—: Integration of molecular data into glioma classification supports diagnostic, prognostic, and therapeutic decision-making; however, testing practices for these informative biomarkers in clinical laboratories remain unclear.
OBJECTIVE.—: To examine the prevalence of molecular testing for clinically relevant biomarkers in adult and pediatric gliomas through review of a College of American Pathologists proficiency testing survey prior to the release of the 2021 World Health Organization Classification of Central Nervous System Tumors.
DESIGN.—: College of American Pathologists proficiency testing 2020 survey results from 96 laboratories performing molecular testing for diffuse gliomas were used to determine the use of testing for molecular biomarkers in gliomas.
RESULTS.—: The data provide perspective into the testing practices for diffuse gliomas from a broad group of clinical laboratories in 2020. More than 98% of participating laboratories perform testing for glioma biomarkers recognized as diagnostic for specific subtypes, including IDH. More than 60% of laboratories also use molecular markers to differentiate between astrocytic and oligodendroglial lineage tumors, with some laboratories providing more comprehensive analyses, including prognostic biomarkers, such as CDKN2A/B homozygous deletions. Almost all laboratories test for MGMT promoter methylation to identify patients with an increased likelihood of responding to temozolomide.
CONCLUSIONS.—: These findings highlight the state of molecular testing in 2020 for the diagnosis and classification of diffuse gliomas at large academic medical centers. The findings show that comprehensive molecular testing is not universal across clinical laboratories and highlight the gaps between laboratory practices in 2020 and the recommendations in the 2021 World Health Organization Classification of Central Nervous System Tumors
Novel high-grade endometrial stromal sarcoma: a morphologic mimicker of myxoid leiomyosarcoma
Endometrial stromal sarcomas (ESS) are often underpinned by recurrent chromosomal translocations resulting in the fusion of genes involved in epigenetic regulation. To date, only YWHAE-NUTM2 rearrangements are associated with distinctive high-grade morphology and aggressive clinical behavior. We identified 3 ESS morphologically mimicking myxoid leiomyosarcoma of the uterus and sought to describe their unique histopathologic features and identify genetic alterations using next-generation sequencing. All cases displayed predominantly spindled cells associated with abundant myxoid stroma and brisk mitotic activity. Tumors involved the endometrium and demonstrated tongue-like myometrial infiltration. All 3 were associated with an aggressive clinical course, including multisite bony metastases in 1 patient, progressive peritoneal disease after chemotherapy in another and metastases to the lung and skin in the last patient. All 3 ESS were found to harbor ZC3H7B-BCOR gene fusions by targeted sequencing and fluorescence in situ hybridization. On the basis of the review of these cases, we find that ESS with ZC3H7B-BCOR fusion constitutes a novel type of high-grade ESS and shares significant morphologic overlap with myxoid leiomyosarcoma
Barriers to adequate follow-up during adjuvant therapy may be important factors in the worse outcome for Black women after breast cancer treatment
<p>Abstract</p> <p>Introduction</p> <p>Black women appear to have worse outcome after diagnosis and treatment of breast cancer. It is still unclear if this is because Black race is more often associated with known negative prognostic indicators or if it is an independent prognostic factor. To study this, we analyzed a patient cohort from an urban university medical center where these women made up the majority of the patient population.</p> <p>Methods</p> <p>We used retrospective analysis of a prospectively collected database of breast cancer patients seen from May 1999 to June 2006. Time to recurrence and survival were analyzed using the Kaplan-Meier method, with statistical analysis by chi-square, log rank testing, and the Cox regression model.</p> <p>Results</p> <p>265 female patients were diagnosed with breast cancer during the time period. Fifty patients (19%) had pure DCIS and 215 patients (81%) had invasive disease. Racial and ethnic composition of the entire cohort was as follows: Black (N = 150, 56.6%), Hispanic (N = 83, 31.3%), Caucasian (N = 26, 9.8%), Asian (N = 4, 1.5%), and Arabic (N = 2, 0.8%). For patients with invasive disease, independent predictors of poor disease-free survival included tumor size, node-positivity, incompletion of adjuvant therapy, and Black race. Tumor size, node-positivity, and Black race were independently associated with disease-specific overall survival.</p> <p>Conclusion</p> <p>Worse outcome among Black women appears to be independent of the usual predictors of survival. Further investigation is necessary to identify the cause of this survival disparity. Barriers to completion of standard post-operative treatment regimens may be especially important in this regard.</p
Validation of mitotic cell quantification via microscopy and multiple whole-slide scanners
Background: The establishment of whole-slide imaging (WSI) as a medical diagnostic device allows that pathologists may evaluate mitotic activity with this new technology. Furthermore, the image digitalization provides an opportunity to develop algorithms for automatic quantifications, ideally leading to improved reproducibility as compared to the naked eye examination by pathologists. In order to implement them effectively, accuracy of mitotic figure detection using WSI should be investigated. In this study, we aimed to measure pathologist performance in detecting mitotic figures (MFs) using multiple platforms (multiple scanners) and compare the results with those obtained using a brightfield microscope. Methods: Four slides of canine oral melanoma were prepared and digitized using 4 WSI scanners. In these slides, 40 regions of interest (ROIs) were demarcated, and five observers identified the MFs using different viewing modes: microscopy and WSI. We evaluated the inter- and intra-observer agreements between modes with Cohen’s Kappa and determined “true” MFs with a consensus panel. We then assessed the accuracy (agreement with truth) using the average of sensitivity and specificity. Results: In the 40 ROIs, 155 candidate MFs were detected by five pathologists; 74 of them were determined to be true MFs. Inter- and intra-observer agreement was mostly “substantial” or greater (Kappa?=?0.594?0.939). Accuracy was between 0.632 and 0.843 across all readers and modes. After averaging over readers for each modality, we found that mitosis detection accuracy for 3 of the 4 WSI scanners was significantly less than that of the microscope (p =?0.002, 0.012, and 0.001). Conclusions: This study is the first to compare WSIs and microscopy in detecting MFs at the level of individual cells. Our results suggest that WSI can be used for mitotic cell detection and offers similar reproducibility to the microscope, with slightly less accuracy
Identification of a novel, recurrent HEY1-NCOA2 fusion in mesenchymal chondrosarcoma based on a genome-wide screen of exon-level expression data
Cancer gene fusions that encode a chimeric protein are often characterized by an intragenic discontinuity in the RNA\expression levels of the exons that are 5' or 3' to the fusion point in one or both of the fusion partners due to differences in the levels of activation of their respective promoters. Based on this, we developed an unbiased, genome-wide bioinformatic screen for gene fusions using Affymetrix Exon array expression data. Using a training set of 46 samples with different known gene fusions, we developed a data analysis pipeline, the Fusion Score (FS) model, to score and rank genes for intragenic changes in expression. In a separate discovery set of 41 tumor samples with possible unknown gene fusions, the FS model generated a list of 552 candidate genes. The transcription factor gene NCOA2 was one of the candidates identified in a mesenchymal chondrosarcoma. A novel HEY1-NCOA2 fusion was identified by 5' RACE, representing an in-frame fusion of HEY1 exon 4 to NCOA2 exon 13. RT-PCR or FISH evidence of this HEY1-NCOA2 fusion was present in all additional mesenchymal chondrosarcomas tested with a definitive histologic diagnosis and adequate material for analysis (n = 9) but was absent in 15 samples of other subtypes of chondrosarcomas. We also identified a NUP107-LGR5 fusion in a dedifferentiated liposarcoma but analysis of 17 additional samples did not confirm it as a recurrent event in this sarcoma type. The novel HEY1-NCOA2 fusion appears to be the defining and diagnostic gene fusion in mesenchymal chondrosarcomas. (C) 2011 Wiley Periodicals, Inc