2 research outputs found

    Effects of Conventional UPS vs Smart Energy Metering Solution on Harmonics and Grid Stability for Low Voltage Consumers in Developing Countries: A Case Study of Pakistan

    No full text
    To deal with frequent power outages in developing countries, people turn to solutions like uninterruptible power supply (UPS), which stores electric energy during normal operating hours and use it to meet energy needs during rolling blackout intervals. Locally produced UPSs of poorer power quality are widely accessible in the marketplaces, and they have a negative impact on power quality. The charging and discharging of the batteries in these UPSs generate significant amount of power losses in weak grid environments. The Smart-UPS is our proposed smart energy metering (SEM) solution for low voltage consumers that is provided by the distribution company. It does not require batteries, therefore there is no power loss or harmonic distortion due to corresponding charging and discharging. Through load flow and harmonic analysis of both traditional UPS and Smart-UPS systems on ETAP, this paper examines their impact on the harmonics and stability of the distribution grid. The simulation results demonstrate that Smart-UPS can assist fixing power quality issues in a developing country like Pakistan by providing cleaner energy than the battery-operated traditional UPSs

    IoT-enabled Smart Energy Metering Solution with Soft-UPS for Developing Countries

    No full text
    Due to its potential in improving the efficiency of energy supply, smart energy metering (SEM) has become an area of interest with the surge in Internet of Things (IoT). SEM entails remote monitoring and control of the sensors and actuators associated with the energy supply system. This provides a flexible platform to conceive and implement new data driven Demand Side Management (DSM) mechanisms. The IoT enablement allows the data to be gathered and analyzed at requisite granularity. In addition to efficient use of energy resources and provisioning of power, developing countries face an additional challenge of temporal mismatch in generation capacity and load factors. This leads to widespread deployment of inefficient and expensive Uninterruptible Power Supply (UPS) solutions for limited power provisioning during resulting blackouts. Our proposed “Soft-UPS” allows dynamic matching of load and generation through a combination of managed curtailment. This eliminates inefficiencies in the energy and power value chain and allows a data-driven approach to solving a widespread problem in developing countries, simultaneously reducing both upfront and running costs of conventional UPS and storage. A scalable and modular platform is proposed and implemented in this paper. The architecture employs “WiMODino” using LoRaWAN with a “Lite Gateway” and SQLite repository for data storage. Role based access to the system through an android application has also been demonstrated for monitoring and control
    corecore