2 research outputs found

    Numerical analysis of pitting corrosion fatigue in floating offshore wind turbine foundations

    Get PDF
    The mooring system of offshore floating wind foundations, which anchors the floating foundations to the seabed, sustains large dynamic loads during operation. The mooring chains are connected to the floating foundation below the water level through fairleads and chain-stoppers. The corrosive marine environment and the cyclic loading make the mooring connection prone to corrosion pitting and fatigue crack initiation and propagation from the pits, particularly in the weld zones. In this study, a finite element analysis of the crack growth from corrosion pits has been performed and the results are presented in order to provide an estimate of the extent of damage after the crack is detected. A Python script have been developed which generates the pit profiles based on a non-uniform random distribution of pit dimensions. 3D pits and elliptical cracks are embedded at critical points of weldment on the mooring point and analysed using ABAQUS XFEM. The Walker's model has been applied in the model to examine the effect of realistic R ratios in floating structures on pitting corrosion fatigue crack propagation along with direct cyclic solver. The numerical results obtained from this study are discussed in terms of the corrosion pitting effects on fatigue crack propagation behaviour in Spar-type floating offshore wind turbine foundations

    Structural integrity assessment of floating offshore wind turbine support structures

    Get PDF
    Floating offshore wind turbines are becoming more attractive to the wind industry due to their capability to operate larger turbines in deeper waters. The floating support structures are anchored to the seabed via mooring chains to impede the structure's unwanted movements. The combination of cyclic stresses and the corrosive marine environment makes the floating support structures vulnerable to corrosion pitting and subsequently fatigue crack initiation and propagation. In this study a framework is proposed to simulate fatigue crack growth from multiple corrosion pits at critical spots of the Spar-type floating support structures to examine the status of the crack during several years of operation. The proposed advanced fracture mechanics based approach provides a methodology to assess the integrity of the structure and subsequently plan for preventive or curative maintenance. The crack growth rate is examined for both singular and multiple cracks at different R ratios and for different stress levels using ABAQUS XFEM. Following numerical simulations, a sensitivity analysis is carried out using Crackwise software for different values of plate thickness, R ratio and initial crack size. The numerical results are discussed in terms of the corrosion pitting effects on fatigue life assessment of floating offshore wind turbine
    corecore