112 research outputs found

    Flavordynamics with Conformal Matter and Gauge Theories on Compact Hyperbolic Manifolds in Extra Dimensions

    Get PDF
    We outline a toy model in which a unique mechanism may trigger a dynamical chain resulting in key low-energy regularities. The starting points are a negative cosmological term in the bulk and conformally invariant nongravity sector. These elements ensure compactification of the extra dimensional space on a compact hyperbolic manifold (with the negative and constant scalar curvature). The overall geometry is then M_4 x B_n. The negative curvature on B_n triggers the formation of the four-dimensional defect which provides in turn a dynamical localization of ordinary particles. It also leads, simultaneously, to a spontaneous breaking of gauge symmetry through a Higgs mechanism. Masses of the fermions, gauge bosons and scalars all derive from the curvature of the internal manifold such that the Higgs boson is generally heavier than the gauge bosons. The factorizable geometry M_4 x B_n and flatness of M_4 require fine-tuning.Comment: 16 pp, added references and a figure with improvements in text; journal versio

    The flavor-changing bottom-strange quark production in the littlest Higgs model with T parity at the ILC

    Full text link
    In the littlest Higgs model with T-parity (LHT) the mirror quarks induce the special flavor structures and some new flavor-changing (FC) couplings which could greatly enhance the production rates of the FC processes. We in this paper study some bottom and anti-strange production processes in the LHT model at the International Linear Collider (ILC), i.e., e+ebsˉe^+e^-\rightarrow b\bar{s} and γγbsˉ\gamma\gamma\rightarrow b\bar{s}. The results show that the production rates of these processes are sizeable for the favorable values of the parameters. Therefore, it is quite possible to test the LHT model or make some constrains on the relevant parameters of the LHT through the detection of these processes at the ILC.Comment: 12 pages, 8 figure

    Regularization of Brane Induced Gravity

    Full text link
    We study the regularization of theories of ``brane induced'' gravity in codimension N>1N>1. The brane can be interpreted as a thin dielectric with a large dielectric constant, embedded in a higher dimensional space. The kinetic term for the higher dimensional graviton is enhanced over the brane. A four dimensional gravitation is found on the brane at distances smaller than a critical distance r<rcr<r_c, and is due to the exchange of a massive resonant graviton. The crossover scale rcr_c is determined by the mass of the resonance. The suppression of the couplings of light Kaluza-Klein modes to brane matter results in a higher dimensional force law at large distances. We show that the resulting theory is free of ghosts or tachyons.Comment: One reference added. To appear in PRD. 20 pages, 3 figure

    Modified mode-expansion on a BPS wall related to the nonlinear realization

    Get PDF
    We propose a modified mode-expansion of the bulk fields in a BPS domain wall background to obtain the effective theory on the wall. The broken SUSY is nonlinearly realized on each mode defined by our mode-expansion. Our work clarifies a relation between two different approaches to derive the effective theory on a BPS wall, {\it i.e.} the nonlinear realization approach and the mode-expansion approach. We also discuss a further modification that respects the Lorentz and U(1)RU(1)_R symmetries broken by the wall.Comment: LaTeX file, 21 pages, no figure

    Core Structure of Global Vortices in Brane World Models

    Full text link
    We study analytically and numerically the core structure of global vortices forming on topologically deformed brane-worlds with a single toroidally compact extra dimension. It is shown that for an extra dimension size larger than the scale of symmetry breaking the magnitude of the complex scalar field at the vortex center can dynamically remain non-zero. Singlevaluedness and regularity are not violated. Instead, the winding escapes to the extra dimension at the vortex center. As the extra dimension size decreases the field magnitude at the core dynamically decreases also and in the limit of zero extra dimension size we reobtain the familiar global vortex solution. Extensions to other types of defects and gauged symmetries are also discussed.Comment: 6 two column pages, 3 figure

    Strong Coupling vs. 4-D Locality in Induced Gravity

    Full text link
    We re-examine the problem of strong coupling in a regularized version of DGP (or ``brane-induced'') gravity. We find that the regularization of ref. hep-th/0304148 differs from DGP in that it does not exhibit strong coupling or ghosts up to cubic order in the interactions. We suggest that the nonlocal nature of the theory, when written in terms of the 4-D metric, is a plausible reason for this phenomenon. Finally, we briefly discuss the possible behavior of the model at higher-order in perturbation theory.Comment: 19 pages, accepted for publication in PR

    Strong coupling in massive gravity by direct calculation

    Full text link
    We consider four-dimensional massive gravity with the Fierz-Pauli mass term. The analysis of the scalar sector has revealed recently that this theory becomes strongly coupled above the energy scale \Lambda = (M_{Pl}^2 m^4)^{1/5} where m is the mass of the graviton. We confirm this scale by explicit calculations of the four-graviton scattering amplitude and of the loop correction to the interaction between conserved sources.Comment: 9 pages, 3 figures, some clarifications adde

    Higgs as a pseudo-Goldstone boson, the mu problem and gauge-mediated supersymmetry breaking

    Full text link
    We study the interplay between the spontaneous breaking of a global symmetry of the Higgs sector and gauge-mediated supersymmetry breaking, in the framework of a supersymmetric model with global SU(3) symmetry. In addition to solving the supersymmetric flavour problem and alleviating the little hierarchy problem, this scenario automatically triggers the breaking of the global symmetry and provides an elegant solution to the mu/Bmu problem of gauge mediation. We study in detail the processes of global symmetry and electroweak symmetry breaking, including the contributions of the top/stop and gauge-Higgs sectors to the one-loop effective potential of the pseudo-Goldstone Higgs boson. While the joint effect of supersymmetry and of the global symmetry allows in principle the electroweak symmetry to be broken with little fine-tuning, the simplest version of the model fails to bring the Higgs mass above the LEP bound due to a suppressed tree-level quartic coupling. To cure this problem, we consider the possibility of additional SU(3)-breaking contributions to the Higgs potential, which results in a moderate fine-tuning. The model predicts a rather low messenger scale, a small tan beta value, a light Higgs boson with Standard Model-like properties, and heavy higgsinos.Comment: 19 pages, 6 figures. New section 3.3 on the mu/Bmu problem, more detailed analytic computation in section 4.1, error in Fig. 5 corrected, significant redactional changes (including abstract, introduction and conclusion) in order to better emphasize the main results of the paper. Title changed in journal. Final version to appear in Eur. Phys. J.

    String production after angled brane inflation

    Full text link
    We describe string production after angled brane inflation. First, we point out that there was a discrepancy in previous discussions. The expected tension of the cosmic string calculated from the four-dimensional effective Lagrangian did not match the one obtained in the brane analysis. In the previous analysis, the cosmic string is assumed to correspond to the lower-dimensional daughter brane, which wraps the same compactified space as the original mother brane. In this case, however, the tension of the daughter brane cannot depend on the angle (\theta). On the other hand, from the analysis of the effective Lagrangian for tachyon condensation, it is easy to see that the tension of the cosmic string must be proportional to \theta, when \theta << 1. This is an obvious discrepancy that must be explained by consideration of the explicit brane dynamics. In this paper, we will solve this problem by introducing a simple idea. We calculate the tension of the string in the two cases, which matches precisely. The cosmological constraint for angled inflation is relaxed, because the expected tension of the cosmic string becomes smaller than the one obtained in previous arguments, by a factor of \theta.Comment: 13pages, 3 figures, typos correcte

    Opaque Branes in Warped Backgrounds

    Get PDF
    We examine localized kinetic terms for gauge fields which can propagate into compact, warped extra dimensions. We show that these terms can have a relevant impact on the values of the Kaluza-Klein (KK) gauge field masses, wave functions, and couplings to brane and bulk matter. The resulting phenomenological implications are discussed. In particular, we show that the presence of opaque branes, with non-vanishing brane-localized gauge kinetic terms, allow much lower values of the lightest KK mode than in the case of transparent branes. Moreover, we show that if the large discrepancies among the different determinations of the weak mixing angle would be solved in favor of the value obtained from the lepton asymmetries, bulk electroweak gauge fields in warped-extra dimensions may lead to an improvement of the agreement of the fit to the electroweak precision data for a Higgs mass of the order of the weak scale and a mass of the first gauge boson KK excitation most likely within reach of the LHC.Comment: 37 pages, 12 figures, improved analysis of the precision electroweak constraint
    corecore