12,403 research outputs found

    Ultrafast Linear Kinetic Inductive Photoresponse of YBa2Cu3O7-{\delta} Meander-Line Structures by Photoimpedance Measurements

    Full text link
    We report the experimental demonstration of linear kinetic-inductive photoresponse of thin-film YBa2Cu3O7-{\delta} (YBCO) meander-line structures, where the photoresponse amplitude, full-width-half-maximum (FWHM), and rise-time are bilinear in the incident optical power and bias current. This bilinear behavior reveals a trade off between obtaining high responsivity and high speed photodetection. We also report a rise-time as short as 29ps in our photoimpedance measurements.Comment: 3 pages, 6 figures, submitted to AP

    Constructing Gravitational Dimensions

    Full text link
    It would be extremely useful to know whether a particular low energy effective theory might have come from a compactification of a higher dimensional space. Here, this problem is approached from the ground up by considering theories with multiple interacting massive gravitons. It is actually very difficult to construct discrete gravitational dimensions which have a local continuum limit. In fact, any model with only nearest neighbor interactions is doomed. If we could find a non-linear extension for the Fierz-Pauli Lagrangian for a graviton of mass mg which does not break down until the scale Lambda_2=(mg Mpl)^(1/2), this could be used to construct a large class of models whose continuum limit is local in the extra dimension. But this is shown to be impossible: a theory with a single graviton must break down by Lambda_3 = (mg^2 Mpl)^(1/3). Next, we look at how the discretization prescribed by the truncation of the KK tower of an honest extra diemsinon rasies the scale of strong coupling. It dictates an intricate set of interactions among various fields which conspire to soften the strongest scattering amplitudes and allow for a local continuum limit. A number of canditate symmetries associated with locality in the discretized dimension are also discussed.Comment: 21 pages, 6 diagrams, 1 figur

    Discrete Gravitational Dimensions

    Get PDF
    We study the physics of a single discrete gravitational extra dimension using the effective field theory for massive gravitons. We first consider a minimal discretization with 4D gravitons on the sites and nearest neighbor hopping terms. At the linear level, 5D continuum physics is recovered correctly, but at the non-linear level the theory becomes highly non-local in the discrete dimension. There is a peculiar UV/IR connection, where the scale of strong interactions at high energies is related to the radius of the dimension. These new effects formally vanish in the limit of zero lattice spacing, but do not do so quickly enough to reproduce the continuum physics consistently in an effective field theory up to the 5D Planck scale. Nevertheless, this model does make sense as an effective theory up to energies parametrically higher than the compactification scale. In order to have a discrete theory that appears local in the continuum limit, the lattice action must have interactions between distant sites. We speculate on the relevance of these observations to the construction of finite discrete theories of gravity in four dimensions.Comment: 5 pages, 4 diagrams. Important typos in some equations corrected; conclusion s unchange

    Causality, Analyticity and an IR Obstruction to UV Completion

    Get PDF
    We argue that certain apparently consistent low-energy effective field theories described by local, Lorentz-invariant Lagrangians, secretly exhibit macroscopic non-locality and cannot be embedded in any UV theory whose S-matrix satisfies canonical analyticity constraints. The obstruction involves the signs of a set of leading irrelevant operators, which must be strictly positive to ensure UV analyticity. An IR manifestation of this restriction is that the "wrong" signs lead to superluminal fluctuations around non-trivial backgrounds, making it impossible to define local, causal evolution, and implying a surprising IR breakdown of the effective theory. Such effective theories can not arise in quantum field theories or weakly coupled string theories, whose S-matrices satisfy the usual analyticity properties. This conclusion applies to the DGP brane-world model modifying gravity in the IR, giving a simple explanation for the difficulty of embedding this model into controlled stringy backgrounds, and to models of electroweak symmetry breaking that predict negative anomalous quartic couplings for the W and Z. Conversely, any experimental support for the DGP model, or measured negative signs for anomalous quartic gauge boson couplings at future accelerators, would constitute direct evidence for the existence of superluminality and macroscopic non-locality unlike anything previously seen in physics, and almost incidentally falsify both local quantum field theory and perturbative string theory.Comment: 34 pages, 10 figures; v2: analyticity arguments improved, discussion on non-commutative theories and minor clarifications adde

    Matrix product state comparison of the numerical renormalization group and the variational formulation of the density matrix renormalization group

    Full text link
    Wilson's numerical renormalization group (NRG) method for solving quantum impurity models yields a set of energy eigenstates that have the form of matrix product states (MPS). White's density matrix renormalization group (DMRG) for treating quantum lattice problems can likewise be reformulated in terms of MPS. Thus, the latter constitute a common algebraic structure for both approaches. We exploit this fact to compare the NRG approach for the single-impurity Anderson model to a variational matrix product state approach (VMPS), equivalent to single-site DMRG. For the latter, we use an ``unfolded'' Wilson chain, which brings about a significant reduction in numerical costs compared to those of NRG. We show that all NRG eigenstates (kept and discarded) can be reproduced using VMPS, and compare the difference in truncation criteria, sharp vs. smooth in energy space, of the two approaches. Finally, we demonstrate that NRG results can be improved upon systematically by performing a variational optimization in the space of variational matrix product states, using the states produced by NRG as input.Comment: 19 pages, 14 figure

    Artificially induced positronium oscillations in a two-sheeted spacetime: consequences on the observed decay processes

    Get PDF
    Following recent theoretical results, it is suggested that positronium (Ps) might undergo spontaneous oscillations between two 4D spacetime sheets whenever subjected to constant irrotational magnetic vector potentials. We show that these oscillations that would come together with o-Ps/p-Ps oscillations should have important consequences on Ps decay rates. Experimental setup and conditions are also suggested for demonstrating in non accelerator experiments this new invisible decay mode.Comment: 9 pages, 2 figures. Minor form correction. Accepted for publication in Int. J. of Modern Physics

    Brane Worlds and the Cosmic Coincidence Problem

    Get PDF
    Brane world models with `large' extra dimensions with radii in the r_l ~ 0.01- 0.1 mm range and smaller ones at r_s < (1 TeV)^(-1) have the potential to solve the cosmic coincidence problem, i.e. the apparently fortuitous equality between dark matter and dark energy components today. The main ingredient is the assumption of a stabilization mechanism fixing the total volume of the compact submanifold, but allowing for shape deformations. The latter are associated with phenomenologically safe ultra-light scalar fields. Bulk fields Casimir energy naturally plays the role of dark energy, which decreases in time because of expanding r_l. Stable Kaluza Klein states may play the role of dark matter with increasing, O(1/r_s), mass. The cosmological equations exhibit attractor solutions in which the global equation of state is negative, the ratio between dark energy and dark matter is constant and the observed value of the ratio is obtained for two large extra dimensions. Experimental searches of large extra dimensions should take into account that, due to the strong coupling between dark matter and radii dynamics, the size of the large extra dimensions inside the galactic halo may be smaller than the average value.Comment: 6 pages, enlarged discussion on the compact volume stabilization mechanism. Version to appear on Phys. Rev.

    Star tracks in the ghost condensate

    Full text link
    We consider the infrared modification of gravity by ghost condensate. Naively, in this scenario one expects sizeable modification of gravity at distances of order 1000 km, provided that the characteristic time scale of the theory is of the order of the Hubble time. However, we argue that this is not the case. The main physical reason for the conspiracy is a simple fact that the Earth (and any other object in the Universe) has velocity of at least of order 10^{-3}c with respect to the rest frame of ghost condensate. Combined with strong retardation effects present in the ghost sector, this fact implies that no observable modification of the gravitational field of nearby objects occurs. Instead, the physical manifestation of ghost condensate is the presence of ``star tracks'' -- narrow regions of space with growing gravitational and ghost fields inside -- along the trajectory of any massive object. We briefly discuss the possibilities to observe these tracks.Comment: 20 pages, 2 figures, final version published in JCA
    corecore