153 research outputs found
Two-Dimensional Electrophoresis of Tau Mutants Reveals Specific Phosphorylation Pattern Likely Linked to Early Tau Conformational Changes
The role of Tau phosphorylation in neurofibrillary degeneration linked to Alzheimer's disease remains to be established. While transgenic mice based on FTDP-17 Tau mutations recapitulate hallmarks of neurofibrillary degeneration, cell models could be helpful for exploratory studies on molecular mechanisms underlying Tau pathology. Here, “human neuronal cell lines” overexpressing Wild Type or mutated Tau were established. Two-dimensional electrophoresis highlights that mutated Tau displayed a specific phosphorylation pattern, which occurs in parallel to the formation of Tau clusters as visualized by electron microscopy. In fact, this pattern is also displayed before Tau pathology onset in a well established mouse model relevant to Tau aggregation in Alzheimer's disease. This study suggests first that pathological Tau mutations may change the distribution of phosphate groups. Secondly, it is possible that this molecular event could be one of the first Tau modifications in the neurofibrillary degenerative process, as this phenomenon appears prior to Tau pathology in an in vivo model and is linked to early steps of Tau nucleation in Tau mutants cell lines. Such cell lines consist in suitable and evolving models to investigate additional factors involved in molecular pathways leading to whole Tau aggregation
Dimethyl Sulfoxide Induces Both Direct and Indirect Tau Hyperphosphorylation
Dimethyl sulfoxide (DMSO) is widely used as a solvent or vehicle for biological studies, and for treatment of specific disorders, including traumatic brain injury and several forms of amyloidosis. As Alzheimer’s disease (AD) brains are characterized by deposits of β-amyloid peptides, it has been suggested that DMSO could be used as a treatment for this devastating disease. AD brains are also characterized by aggregates of hyperphosphorylated tau protein, but the effect of DMSO on tau phosphorylation is unknown. We thus investigated the impact of DMSO on tau phosphorylation in vitro and in vivo. One hour following intraperitoneal administration of 1 or 2 ml/kg DMSO in mice, no change was observed in tau phosphorylation. However, at 4 ml/kg, tau was hyperphosphorylated at AT8 (Ser202/Thr205), PHF-1 (Ser396/Ser404) and AT180 (Thr231) epitopes. At this dose, we also noticed that the animals were hypothermic. When the mice were maintained normothermic, the effect of 4 ml/kg DMSO on tau hyperphosphorylation was prevented. On the other hand, in SH-SY5Y cells, 0.1% DMSO induced tau hyperphosphorylation at AT8 and AT180 phosphoepitopes in normothermic conditions. Globally, these findings demonstrate that DMSO can induce tau hyperphosphorylation indirectly via hypothermia in vivo, and directly in vitro. These data should caution researchers working with DMSO as it can induce artifactual results both in vivo and in vitro
A2A adenosine receptor deletion is protective in a mouse model of Tauopathy
© 2016 Macmillan Publishers Limited All rights reserved. This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivs 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http:// creativecommons.org/licenses/by-nc-nd/4.0/Consumption of caffeine, a non-selective adenosine A2A receptor (A2AR) antagonist, reduces the risk of developing Alzheimer's disease (AD) in humans and mitigates both amyloid and Tau burden in transgenic mouse models. However, the impact of selective A2AR blockade on the progressive development of AD-related lesions and associated memory impairments has not been investigated. In the present study, we removed the gene encoding A2AR from THY-Tau22 mice and analysed the subsequent effects on both pathological (Tau phosphorylation and aggregation, neuro-inflammation) and functional impairments (spatial learning and memory, hippocampal plasticity, neurotransmitter profile). We found that deleting A2ARs protect from Tau pathology-induced deficits in terms of spatial memory and hippocampal long-term depression. These effects were concomitant with a normalization of the hippocampal glutamate/gamma-amino butyric acid ratio, together with a global reduction in neuro-inflammatory markers and a decrease in Tau hyperphosphorylation. Additionally, oral therapy using a specific A2AR antagonist (MSX-3) significantly improved memory and reduced Tau hyperphosphorylation in THY-Tau22 mice. By showing that A2AR genetic or pharmacological blockade improves the pathological phenotype in a Tau transgenic mouse model, the present data highlight A2A receptors as important molecular targets to consider against AD and Tauopathies.This work was supported by grants from France Alzheimer (to DB) and LECMA/Alzheimer Forschung Initiative (to DB and CEM). DB and LVL got a Égide/Pessoa program EU exchange grant. Our laboratory is also supported by the LabEx (excellence laboratory) DISTALZ (Development of Innovative Strategies for a Transdisciplinary approach to ALZheimer’s disease), Inserm, CNRS, Université Lille 2, Lille Métropole Communauté Urbaine, Région Nord/Pas-de-Calais, FEDER, DN2M, ANR (ADONTAGE and ADORATAU, to DB) and FUI MEDIALZ. We thank the animal facility of IMPRT-IFR114 and M Besegher, I Brion, D Cappe, R Dehaynin, J Devassine, Y Lepage, C Meunier and D Taillieu for transgenic mouse production and animal care, as well as M Basquin, D Demeyer, S Eddarkaoui, H Obriot and M Schneider for support. CL holds a doctoral grant from Lille 2 University, and SB from Région Nord Pas de Calais and CHRU de Lille. VF holds a grant from Région Nord-Pas-de-Calais and Inserm. EF holds a post-doctoral grant from Région Nord-Pas-de-Calais (DN2M). LVL is an Investigator FCT (Fundação para a Ciência e Tecnologia, Portugal).info:eu-repo/semantics/publishedVersio
Electron Transfer Function versus Oxygen Delivery: A Comparative Study for Several Hexacoordinated Globins Across the Animal Kingdom
Caenorhabditis elegans globin GLB-26 (expressed from gene T22C1.2) has been studied in comparison with human neuroglobin (Ngb) and cytoglobin (Cygb) for its electron transfer properties. GLB-26 exhibits no reversible binding for O2 and a relatively low CO affinity compared to myoglobin-like globins. These differences arise from its mechanism of gaseous ligand binding since the heme iron of GLB-26 is strongly hexacoordinated in the absence of external ligands; the replacement of this internal ligand, probably the E7 distal histidine, is required before binding of CO or O2 as for Ngb and Cygb. Interestingly the ferrous bis-histidyl GLB-26 and Ngb, another strongly hexacoordinated globin, can transfer an electron to cytochrome c (Cyt-c) at a high bimolecular rate, comparable to those of inter-protein electron transfer in mitochondria. In addition, GLB-26 displays an unexpectedly rapid oxidation of the ferrous His-Fe-His complex without O2 actually binding to the iron atom, since the heme is oxidized by O2 faster than the time for distal histidine dissociation. These efficient mechanisms for electron transfer could indicate a family of hexacoordinated globin which are functionally different from that of pentacoordinated globins
A Minimal Functional Complex of Cytochrome P450 and FBD of Cytochrome P450 Reductase in Nanodiscs
Structural interactions that enable electron transfer to cytochromeâ P450 (CYP450) from its redox partner CYP450â reductase (CPR) are a vital prerequisite for its catalytic mechanism. The first structural model for the membraneâ bound functional complex to reveal interactions between the fullâ length CYP450 and a minimal domain of CPR is now reported. The results suggest that anchorage of the proteins in a lipid bilayer is a minimal requirement for CYP450 catalytic function. Akin to cytochromeâ b5 (cytâ b5), Argâ 125 on the Câ helix of CYP450s is found to be important for effective electron transfer, thus supporting the competitive behavior of redox partners for CYP450s. A general approach is presented to study proteinâ protein interactions combining the use of nanodiscs with NMR spectroscopy and SAXS. Linking structural details to the mechanism will help unravel the xenobiotic metabolism of diverse microsomal CYP450s in their native environment and facilitate the design of new drug entities.Auf der Grundlage einer Strukturanalyse von Cytochrom P450 (CYP450) im Komplex mit seinem Redoxpartner kann der Pfad des selektiven Elektronentransfers verstanden werden. Strukturelle Wechselwirkungen in einem solchen Komplex, verankert in einer Lipidmembran, sind eine Grundvoraussetzung für diese Funktion. Der Stoffwechsel von Wirkâ und Fremdstoffen durch diverse mikrosomale CYPs in ihrem nativen Membranumfeld wird aufgeklärt.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/144609/1/ange201802210.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/144609/2/ange201802210-sup-0001-misc_information.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/144609/3/ange201802210_am.pd
Protection from Intracellular Oxidative Stress by Cytoglobin in Normal and Cancerous Oesophageal Cells
Cytoglobin is an intracellular globin of unknown function that is expressed mostly in cells of a myofibroblast lineage. Possible functions of cytoglobin include buffering of intracellular oxygen and detoxification of reactive oxygen species. Previous work in our laboratory has demonstrated that cytoglobin affords protection from oxidant-induced DNA damage when over expressed in vitro, but the importance of this in more physiologically relevant models of disease is unknown. Cytoglobin is a candidate for the tylosis with oesophageal cancer gene, and its expression is strongly down-regulated in non-cancerous oesophageal biopsies from patients with TOC compared with normal biopsies. Therefore, oesophageal cells provide an ideal experimental model to test our hypothesis that downregulation of cytoglobin expression sensitises cells to the damaging effects of reactive oxygen species, particularly oxidative DNA damage, and that this could potentially contribute to the TOC phenotype. In the current study, we tested this hypothesis by manipulating cytoglobin expression in both normal and oesophageal cancer cell lines, which have normal physiological and no expression of cytoglobin respectively. Our results show that, in agreement with previous findings, over expression of cytoglobin in cancer cell lines afforded protection from chemically-induced oxidative stress but this was only observed at non-physiological concentrations of cytoglobin. In addition, down regulation of cytoglobin in normal oesophageal cells had no effect on their sensitivity to oxidative stress as assessed by a number of end points. We therefore conclude that normal physiological concentrations of cytoglobin do not offer cytoprotection from reactive oxygen species, at least in the current experimental model
Coupled Motions Direct Electrons along Human Microsomal P450 Chains
Directional electron transfer through biological redox chains can be achieved by coupling reaction chemistry to conformational changes in individual redox enzymes
A Membrane-Bound Vertebrate Globin
The family of vertebrate globins includes hemoglobin, myoglobin, and other O2-binding proteins of yet unclear functions. Among these, globin X is restricted to fish and amphibians. Zebrafish (Danio rerio) globin X is expressed at low levels in neurons of the central nervous system and appears to be associated with the sensory system. The protein harbors a unique N-terminal extension with putative N-myristoylation and S-palmitoylation sites, suggesting membrane-association. Intracellular localization and transport of globin X was studied in 3T3 cells employing green fluorescence protein fusion constructs. Both myristoylation and palmitoylation sites are required for correct targeting and membrane localization of globin X. To the best of our knowledge, this is the first time that a vertebrate globin has been identified as component of the cell membrane. Globin X has a hexacoordinate binding scheme and displays cooperative O2 binding with a variable affinity (P50∼1.3–12.5 torr), depending on buffer conditions. A respiratory function of globin X is unlikely, but analogous to some prokaryotic membrane-globins it may either protect the lipids in cell membrane from oxidation or may act as a redox-sensing or signaling protein
Propofol Directly Increases Tau Phosphorylation
In Alzheimer's disease (AD) and other tauopathies, the microtubule-associated protein tau can undergo aberrant hyperphosphorylation potentially leading to the development of neurofibrillary pathology. Anesthetics have been previously shown to induce tau hyperphosphorylation through a mechanism involving hypothermia-induced inhibition of protein phosphatase 2A (PP2A) activity. However, the effects of propofol, a common clinically used intravenous anesthetic, on tau phosphorylation under normothermic conditions are unknown. We investigated the effects of a general anesthetic dose of propofol on levels of phosphorylated tau in the mouse hippocampus and cortex under normothermic conditions. Thirty min following the administration of propofol 250 mg/kg i.p., significant increases in tau phosphorylation were observed at the AT8, CP13, and PHF-1 phosphoepitopes in the hippocampus, as well as at AT8, PHF-1, MC6, pS262, and pS422 epitopes in the cortex. However, we did not detect somatodendritic relocalization of tau. In both brain regions, tau hyperphosphorylation persisted at the AT8 epitope 2 h following propofol, although the sedative effects of the drug were no longer evident at this time point. By 6 h following propofol, levels of phosphorylated tau at AT8 returned to control levels. An initial decrease in the activity and expression of PP2A were observed, suggesting that PP2A inhibition is at least partly responsible for the hyperphosphorylation of tau at multiple sites following 30 min of propofol exposure. We also examined tau phosphorylation in SH-SY5Y cells transfected to overexpress human tau. A 1 h exposure to a clinically relevant concentration of propofol in vitro was also associated with tau hyperphosphorylation. These findings suggest that propofol increases tau phosphorylation both in vivo and in vitro under normothermic conditions, and further studies are warranted to determine the impact of this anesthetic on the acceleration of neurofibrillary pathology
Hypothermia-induced hyperphosphorylation: a new model to study tau kinase inhibitors
Tau hyperphosphorylation is one hallmark of Alzheimer's disease (AD) pathology. Pharmaceutical companies have thus developed kinase inhibitors aiming to reduce tau hyperphosphorylation. One obstacle in screening for tau kinase inhibitors is the low phosphorylation levels of AD-related phospho-epitopes in normal adult mice and cultured cells. We have shown that hypothermia induces tau hyperphosphorylation in vitro and in vivo. Here, we hypothesized that hypothermia could be used to assess tau kinase inhibitors efficacy. Hypothermia applied to models of biological gradual complexity such as neuronal-like cells, ex vivo brain slices and adult non-transgenic mice leads to tau hyperphosphorylation at multiple AD-related phospho-epitopes. We show that Glycogen Synthase Kinase-3 inhibitors LiCl and AR-A014418, as well as roscovitine, a cyclin-dependent kinase 5 inhibitor, decrease hypothermia-induced tau hyperphosphorylation, leading to different tau phosphorylation profiles. Therefore, we propose hypothermia-induced hyperphosphorylation as a reliable, fast, convenient and inexpensive tool to screen for tau kinase inhibitors
- …