65 research outputs found
Differential Impacts of Yeasts on Feeding Behavior and Development in Larval Drosophila suzukii (Diptera:Drosophilidae)
Partial funding for Open Access provided by the UMD Libraries' Open Access Publishing Fund.Larval Drosophila encounter and feed on a diverse microbial community within fruit. In particular, free-living yeast microbes provide a source of dietary protein critical for development. However, successional changes to the fruit microbial community may alter host quality through impacts on relative protein content or yeast community composition. For many species of Drosophila, fitness benefits from yeast feeding vary between individual yeast species, indicating differences in yeast nutritional quality. To better understand these associations, we evaluated how five species of yeast impacted feeding preference and development in larval Drosophila suzukii. Larvae exhibited a strong attraction to the yeast Hanseniaspora uvarum in pairwise yeast feeding assays. However, larvae also performed most poorly on diets containing H. uvarum, a mismatch in preference and performance that suggests differences in yeast nutritional quality are not the primary factor driving larval feeding behavior. Together, these results demonstrate that yeast plays a critical role in D. suzukii’s ecology and that larvae may have developed specific yeast associations. Further inquiry, including systematic comparisons of Drosophila larval yeast associations more broadly, will be necessary to understand patterns of microbial resource use in larvae of D. suzukii and other frugivorous species
Genome of Drosophila suzukii, the spotted wing drosophila.
Drosophila suzukii Matsumura (spotted wing drosophila) has recently become a serious pest of a wide variety of fruit crops in the United States as well as in Europe, leading to substantial yearly crop losses. To enable basic and applied research of this important pest, we sequenced the D. suzukii genome to obtain a high-quality reference sequence. Here, we discuss the basic properties of the genome and transcriptome and describe patterns of genome evolution in D. suzukii and its close relatives. Our analyses and genome annotations are presented in a web portal, SpottedWingFlyBase, to facilitate public access
Recommended from our members
Biotic and abiotic factors impacting development, behavior, phenology, and reproductive biology of Drosophila suzukii
Spotted wing drosophila, Drosophila suzukii, is a devastating invasive pest of small and stone fruits in the Americas and Europe. To better understand the population dynamics of D. suzukii, we reviewed recent work on juvenile development, adult reproduction, and seasonal variation in life history parameters including the abiotic/biotic factors that influence these processes. Juvenile development is optimal at moderately warm temperatures, and larvae exhibit some immunity to parasitism. Adults use visual cues and substrate-borne vibrations for courtship and exhibit a bimodal locomotor activity pattern (except mated females). Under 20–27 °C and various conditions, development from egg to adult can take 10–17 days, females first lay eggs within 1–8 days and their lifetime fecundity varies from 400. Oviposition is consistently high in raspberry hosts and fruits with lower penetration force, and the presence of Wolbachia endosymbionts can lower fertility. Drosophila suzukii exhibit seasonal variation with a darker winter morph that is more cold tolerant. Also, D. suzukii likely undergo reproductive diapause in the fall, with colder temperatures and shorter day lengths influencing reproduction. To develop viable IPM programs for D. suzukii, knowledge of abiotic and biotic conditions that impact D. suzukii life history parameters and population dynamics is critical, and gaps in the current knowledge are discussed.Keywords: Development, Overwintering, Spotted wing drosophila, Chronobiology, Reproduction, Invasive specie
Recommended from our members
Biotic and abiotic factors impacting development, behavior, phenology, and reproductive biology of Drosophila suzukii
Spotted wing drosophila, Drosophila suzukii, is a devastating invasive pest of small and stone fruits in the Americas and Europe. To better understand the population dynamics of D. suzukii, we reviewed recent work on juvenile development, adult reproduction, and seasonal variation in life history parameters including the abiotic/biotic factors that influence these processes. Juvenile development is optimal at moderately warm temperatures, and larvae exhibit some immunity to parasitism. Adults use visual cues and substrate-borne vibrations for courtship and exhibit a bimodal locomotor activity pattern (except mated females). Under 20–27 °C and various conditions, development from egg to adult can take 10–17 days, females first lay eggs within 1–8 days and their lifetime fecundity varies from 400. Oviposition is consistently high in raspberry hosts and fruits with lower penetration force, and the presence of Wolbachia endosymbionts can lower fertility. Drosophila suzukii exhibit seasonal variation with a darker winter morph that is more cold tolerant. Also, D. suzukii likely undergo reproductive diapause in the fall, with colder temperatures and shorter day lengths influencing reproduction. To develop viable IPM programs for D. suzukii, knowledge of abiotic and biotic conditions that impact D. suzukii life history parameters and population dynamics is critical, and gaps in the current knowledge are discussed.To the best of our knowledge, one or more authors of this paper were federal employees when contributing to this work.
This is the publisher’s final pdf. The published article is copyrighted by Springer and can be found at: https://doi.org/10.1007/s10340-016-0756-
Recommended from our members
Genome of Drosophila suzukii, the Spotted Wing Drosophila
Drosophila suzukii Matsumura (spotted wing drosophila) has recently become a serious pest of a wide variety of fruit crops in the United States as well as in Europe, leading to substantial yearly crop losses. To enable basic and applied research of this important pest, we sequenced the D. suzukii genome to obtain a high-quality reference sequence. Here, we discuss the basic properties of the genome and transcriptome and describe patterns of genome evolution in D. suzukii and its close relatives. Our analyses and genome annotations are presented in a web portal, SpottedWingFlyBase, to facilitate public access.This is the publisher’s final pdf. The published article is copyrighted by the author(s) and published by the Genetics Society of America. The published article can be found at: http://www.g3journal.org/.Keywords: Spotted Wing Fly Base, Drosophila suzukii, Ortholog, Genome evolutio
Recommended from our members
Evaluation of Monitoring Traps for Drosophila suzukii (Diptera: Drosophilidae) in North America
Drosophila suzukii Matsumura (Diptera: Drosophilidae), a recent invasive pest of small and stone fruits, has been detected in more than half of the U.S. states, and in Canada, Mexico, and Europe. Upon discovery, several different trap designs were recommended for monitoring. This study compared the trap designs across seven states/provinces in North America and nine crop types. Between May and November 2011, we compared a clear cup with 10 side holes (clear); a commercial trap with two side holes (commercial); a Rubbermaid container with mesh lid and rain tent (Haviland), and with 10 side holes and no tent (modified Haviland); a red cup with 10 side holes (red); and a white container with mesh lid and rain tent (Van Steenwyk). Although fly catches among traps varied per site, overall, the Haviland trap caught the most D. suzukii, followed by the red, Van Steenwyk, and clear trap. The modified Haviland and commercial trap had low captures. Among five crop types in Oregon, a clear cup with mesh sides (Dreves) also was tested and caught the most flies. Traps with greater entry areas, found in mesh traps, caught more flies than traps with smaller entry areas. In terms of sensitivity and selectivity, traps that caught more flies likewise caught flies earlier, and all traps caught 26-31% D. suzukii out of the total Drosophila captured. Future trap improvements should incorporate more entry points and focus on selective baits to improve efficiency and selectivity with regard to the seasonal behavior of D. suzukii.This is the publisher’s final pdf. The article is published by the Entomological Society of America. It can be found at: http://www.entsoc.org/Pubs/Periodicals/JE
Drosophila suzukii population response to environment and management strategies
19openInternationalInternational coauthor/editorDrosophila suzukii causes economic damage to berry and stone fruit worldwide. Laboratory-generated datasets were standardized and combined on the basis of degree days (DD), using Gompertz and Cauchy curves for survival and reproduction. Eggs transitioned to larvae at 20.3 DD; larvae to pupae at 118.1 DD; and pupae to adults at 200 DD. All adults are expected to have died at 610 DD. Oviposition initiates at 210 DD and gradually increases to a maximum of 15 eggs per DD at 410 DD and subsequently decreases to zero at 610 DD. These data were used as the basis for a DD cohort-level population model. Laboratory survival under extreme temperatures when DD did not accumulate was described by a Gompertz curve based on calendar days. We determined that the initiation of the reproductive period of late dormant field-collected female D. suzukii ranged from 50 to 800 DD from January 1. This suggests that D. suzukii females can reproduce early in the season and are probably limited by availability of early host plants. Finally, we used the DD population model to examine hypothetical stage-specific mortality effects of IPM practices from insecticides and parasitoids at the field level. We found that adulticides applied during the early season will result in the largest comparative population decrease. It is clear from model outputs that parasitism levels comparable to those found in field studies may have a limited effect on population growth. Novel parasitoid guilds could therefore be improved and would be valuable for IPM of D. suzukii.openWiman, N.G.; Dalton, D.T.; Anfora, G.; Biondi, A.; Chiu, J.; Daane, K.M.; Gerdeman, B.; Gottardello, A.; Hamby, K.; Isaacs, R.; Grassi, A.; Ioriatti, C.; Lee, J.C.; Miller, B.; Rossi Stacconi, V.; Shearer, P.W.; Tanigoshi, L.; Wang, X.; Walton, V.M.Wiman, N.G.; Dalton, D.T.; Anfora, G.; Biondi, A.; Chiu, J.; Daane, K.M.; Gerdeman, B.; Gottardello, A.; Hamby, K.; Isaacs, R.; Grassi, A.; Ioriatti, C.; Lee, J.C.; Miller, B.; Rossi Stacconi, M.V.; Shearer, P.W.; Tanigoshi, L.; Wang, X.; Walton, V.M
Recommended from our members
Trap Designs for Monitoring Drosophila suzukii (Diptera: Drosophilidae)
Drosophila suzukii (Matsumura), an invasive pest of small and stone fruits, has been recently detected in 39 states of the United States, Canada, Mexico, and Europe. This pest attacks ripening fruit, causing economic losses including increased management costs and crop rejection. Ongoing research aims to improve the efficacy of monitoring traps. Studies were conducted to evaluate how physical trap features affect captures of D. suzukii. We evaluated five colors, two bait surface areas, and a top and side position for the fly entry point. Studies were conducted at 16 sites spanning seven states and provinces of North America and nine crop types. Apple cider vinegar was the standard bait in all trap types. In the overall analysis, yellow-colored traps caught significantly more flies than clear, white, and black traps; and red traps caught more than clear traps. Results by color may be influenced by crop type. Overall, the trap with a greater bait surface area caught slightly more D. suzukii than the trap with smaller area (90 vs. 40 cm²). Overall, the two traps with a side-mesh entry, with or without a protective rain tent, caught more D. suzukii than the trap with a top-mesh entry and tent.This article is the copyright property of the Entomological Society of America and may not be used for any commercial or other private purpose without specific written permission of the Entomological Society of America. This is the publisher’s final pdf. The published article can be found at: http://www.entsoc.org/Pubs/Periodicals/EE.Keywords: monitoring, spotted wing drosophila, color, vinegar fly, trap designKeywords: monitoring, spotted wing drosophila, color, vinegar fly, trap desig
- …