147 research outputs found

    Knight shift detection using gate-induced decoupling of the hyperfine interaction in quantum Hall edge channels

    Full text link
    A method for the observation of the Knight shift in nanometer-scale region in semiconductors is developed using resistively detected nuclear magnetic resonance (RDNMR) technique in quantum Hall edge channels. Using a gate-induced decoupling of the hyperfine interaction between electron and nuclear spins, we obtain the RDNMR spectra with or without the electron-nuclear spin coupling. By a comparison of these two spectra, the values of the Knight shift can be given for the nuclear spins polarized dynamically in the region between the relevant edge channels in a single two-dimensional electron system, indicating that this method has a very high sensitivity compared to a conventional NMR technique.Comment: 4 pages, 4 figures, to appear in Applied Physics Letter

    Effect of the shape anisotropy on the magnetic configuration of (Ga,Mn)As and its evolution with temperature

    Full text link
    We study the effect of the shape anisotropy on the magnetic domain configurations of a ferromagnetic semiconductor (Ga,Mn)As/GaAs(001) epitaxial wire as a function of temperature. Using magnetoresistance measurements, we deduce the magnetic configurations and estimate the relative strength of the shape anisotropy compared with the intrinsic anisotropies. Since the intrinsic anisotropy is found to show a stronger temperature dependence than the shape anisotropy, the effect of the shape anisotropy on the magnetic domain configuration is relatively enhanced with increasing temperature. This information about the shape anisotropy provides a practical means of designing nanostructured spin electronic devices using (Ga,Mn)As.Comment: 4 pages, 4 figures, to appear in J. Appl. Phy

    Gate-controlled nuclear magnetic resonance in an AlGaAs/GaAs quantum Hall device

    Full text link
    We study the resistively detected nuclear magnetic resonance (NMR) in an AlGaAs/GaAs quantum Hall device with a side gate. The strength of the hyperfine interaction between electron and nuclear spins is modulated by tuning a position of the two-dimensional electron systems with respect to the polarized nuclear spins using the side-gate voltages. The NMR frequency is systematically controlled by the gate-tuned technique in a semiconductor device.Comment: 3 pages, 4 figures, submitted to Appl. Phys. Let

    Mixed magnetic phases in (Ga,Mn)As epilayers

    Full text link
    Two different ferromagnetic-paramagnetic transitions are detected in (Ga,Mn)As/GaAs(001) epilayers from ac susceptibility measurements: transition at a higher temperature results from (Ga,Mn)As cluster phases with [110] uniaxial anisotropy and that at a lower temperature is associated with a ferromagnetic (Ga,Mn)As matrix with cubic anisotropy. A change in the magnetic easy axis from [100] to [110] with increasing temperature can be explained by the reduced contribution of cubic anisotropy to the magnetic properties above the transition temperature of the (Ga,Mn)As matrix

    Effect of Ga+^{+} irradiation on magnetic and magnetotransport properties in (Ga,Mn)As epilayers

    Full text link
    We report on the magnetic and magnetotransport properties of ferromagnetic semiconductor (Ga,Mn)As modified by Ga+^{+} ion irradiation using focused ion beam. A marked reduction in the conductivity and the Curie temperature is induced after the irradiation. Furthermore, an enhanced negative magnetoresistance (MR) and a change in the magnetization reversal process are also demonstrated at 4 K. Raman scattering spectra indicate a decrease in the concentration of hole carriers after the irradiation, and a possible origin of the change in the magnetic properties is discussed

    Ion Irradiation Control of Ferromagnetism in (Ga,Mn)As

    Full text link
    We report on a promising approach to the artificial modification of ferromagnetic properties in (Ga,Mn)As using a Ga+^+ focused ion beam (FIB) technique. The ferromagnetic properties of (Ga,Mn)As such as magnetic anisotropy and Curie temperature can be controlled using Ga+^+ ion irradiation, originating from a change in hole concentration and the corresponding systematic variation in exchange interaction between Mn spins. This change in hole concentration is also verified using micro-Raman spectroscopy. We envisage that this approach offers a means of modifying the ferromagnetic properties of magnetic semiconductors on the micro- or nano-meter scale.Comment: 4 pages, 4 figures, to appear in Jpn. J. Appl. Phys. (Part 2 Letters

    Magnetic anisotropy switching in (Ga,Mn)As with increasing hole concentration

    Full text link
    We study a possible mechanism of the switching of the magnetic easy axis as a function of hole concentration in (Ga,Mn)As epilayers. In-plane uniaxial magnetic anisotropy along [110] is found to exceed intrinsic cubic magnetocrystalline anisotropy above a hole concentration of p = 1.5 * 10^21 cm^-3 at 4 K. This anisotropy switching can also be realized by post-growth annealing, and the temperature-dependent ac susceptibility is significantly changed with increasing annealing time. On the basis of our recent scenario [Phys. Rev. Lett. 94, 147203 (2005); Phys. Rev. B 73, 155204 (2006).], we deduce that the growth of highly hole-concentrated cluster regions with [110] uniaxial anisotropy is likely the predominant cause of the enhancement in [110] uniaxial anisotropy at the high hole concentration regime. We can clearly rule out anisotropic lattice strain as a possible origin of the switching of the magnetic anisotropy.Comment: 5 pages, 4 figures, to appear in Phys. Rev.
    • …
    corecore