4,419 research outputs found
Towards a Model for the Progenitors of Gamma-Ray Bursts
We consider models for gamma-ray bursts in which a collimated jet expands
either into a homogeneous medium or into a stellar wind environment, and
calculate the expected afterglow temporal behavior. We show that (i) following
a break and a faster decay, afterglows should exhibit a flattening, which may
be detectable in both the radio and optical bands; (ii) Only observations at
times much shorter than a day can clearly distinguish between a fireball
interacting with a homogeneous medium and one interacting with a stellar wind.
Using our results we demonstrate that constraints can be placed on progenitor
models. In particular, existing data imply that while some long duration bursts
may be produced by collapses of massive stars, it is almost certain that not
all long duration bursts are produced by such progenitors.Comment: 13 pages; Submitted to Ap
Cosmological bounds on pseudo Nambu-Goldstone bosons
We review the cosmological implications of a relic population of pseudo
Nambu-Goldstone bosons (pNGB) with an anomalous coupling to two photons, often
called axion-like particles (ALPs). We establish constraints on the pNGB mass
and two-photon coupling by considering big bang nucleosynthesis, the physics of
the cosmic microwave background, and the diffuse photon background. The bounds
from WMAP7 and other large-scale-structure data on the effective number of
neutrino species can be stronger than the traditional bounds from the
primordial helium abundance. These bounds, together with those from primordial
deuterium abundance, constitute the most stringent probes of early decays.Comment: 29 pages, 13 pictures. Enlarged discussions on BBN and recombination
constraints. One figure and several references added. Version accepted in
JCA
Quasar outflow energetics from broad absorption line variability
Quasar outflows have long been recognized as potential contributors to the
co-evolution between supermassive black holes (SMBHs) and their host galaxies.
The role of outflows in AGN feedback processes can be better understood by
placing observational constraints on wind locations and kinetic energies. We
utilize broad absorption line (BAL) variability to investigate the properties
of a sample of 71 BAL quasars with PV broad absorption. The
presence of PV BALs indicates that other BALs like CIV
are saturated, such that variability in those lines favours clouds crossing the
line of sight. We use these constraints with measurements of BAL variability to
estimate outflow locations and energetics. Our data set consists of
multiple-epoch spectra from the Sloan Digital Sky Survey and MDM Observatory.
We detect significant (4) BAL variations from 10 quasars in our sample
over rest frame time-scales between < 0.2-3.8 yr. Our derived distances for the
10 variable outflows are nominally < 1-10 pc from the SMBH using the
transverse-motion scenario, and < 100-1000 pc from the central source using
ionization-change considerations. These distances, in combination with the
estimated high outflow column densities (i.e. > 10
cm), yield outflow kinetic luminosities between ~ 0.001-1 times the
bolometric luminosity of the quasar, indicating that many absorber energies
within our sample are viable for AGN feedback.Comment: 19 pages, 3 figures, 4 tables, 1 supplementary figure, accepted to
MNRA
Weak magnetic fields in central stars of planetary nebulae?
It is not yet clear whether magnetic fields play an essential role in shaping
planetary nebulae (PNe), or whether stellar rotation alone and/or a close
binary companion can account for the variety of the observed nebular
morphologies. In a quest for empirical evidence verifying or disproving the
role of magnetic fields in shaping PNe, we follow up on previous attempts to
measure the magnetic field in a representative sample of PN central stars. We
obtained low-resolution polarimetric spectra with FORS 2 at VLT for a sample of
twelve bright central stars of PNe with different morphology, including two
round nebulae, seven elliptical nebulae, and three bipolar nebulae. Two targets
are Wolf-Rayet type central stars. For the majority of the observed central
stars, we do not find any significant evidence for the existence of surface
magnetic fields. However, our measurements may indicate the presence of weak
mean longitudinal magnetic fields of the order of 100 Gauss in the central star
of the young elliptical planetary nebula IC 418, as well as in the Wolf-Rayet
type central star of the bipolar nebula Hen2-113 and the weak emission line
central star of the elliptical nebula Hen2-131. A clear detection of a 250 G
mean longitudinal field is achieved for the A-type companion of the central
star of NGC 1514. Some of the central stars show a moderate night-to-night
spectrum variability, which may be the signature of a variable stellar wind
and/or rotational modulation due to magnetic features. We conclude that strong
magnetic fields of the order of kG are not widespread among PNe central stars.
Nevertheless, simple estimates based on a theoretical model of magnetized wind
bubbles suggest that even weak magnetic fields below the current detection
limit of the order of 100 G may well be sufficient to contribute to the shaping
of PNe throughout their evolution.Comment: 16 pages, 11 figures, 3 tables, accepted for publication in A&A;
References updated, minor correction
Effects of CMB temperature uncertainties on cosmological parameter estimation
We estimate the effect of the experimental uncertainty in the measurement of
the temperature of the cosmic microwave background (CMB) on the extraction of
cosmological parameters from future CMB surveys. We find that even for an ideal
experiment limited only by cosmic variance up to l = 2500 for both the
temperature and polarisation measurements, the projected cosmological parameter
errors are remarkably robust against the uncertainty of 1 mK in the FIRAS
instrument's CMB temperature monopole measurement. The maximum degradation in
sensitivity is 20%, for the baryon density estimate, relative to the case in
which the monopole is known infinitely well. While this degradation is
acceptable, we note that reducing the uncertainty in the current temperature
measurement by a factor of five will bring it down to the per cent level. We
also estimate the effect of the uncertainty in the dipole temperature
measurement. Assuming the overall calibration of the data to be dominated by
the dipole error of 0.2% from FIRAS, the sensitivity degradation is
insignificant and does not exceed 10% in any parameter direction.Comment: 12 pages, 2 figures, uses iopart.cls, v2: added discussion of CMB
dipole uncertainty, version accepted by JCA
Constraining FeLoBAL outflows from absorption line variability
FeLoBALs are a rare class of quasar outflows with low-ionization broad
absorption lines (BALs), large column densities, and potentially large kinetic
energies that might be important for `feedback' to galaxy evolution. In order
to probe the physical properties of these outflows, we conducted a
multiple-epoch, absorption line variability study of 12 FeLoBAL quasars
spanning a redshift range between 0.7 and 1.9 over rest frame time-scales of
approximately 10 d to 7.6 yr. We detect absorption line variability with
greater than 8 sigma confidence in 3 out of the 12 sources in our sample over
time-scales of 0.6 to 7.6 yr. Variable wavelength intervals are associated with
ground and excited state Fe II multiplets, the Mg II 2796, 2803 doublet, Mg I
2852, and excited state Ni II multiplets. The observed variability along with
evidence of saturation in the absorption lines favors transverse motions of gas
across the line of sight (LOS) as the preferred scenario, and allows us to
constrain the outflow distance from the supermassive black hole (SMBH) to be
less than 69, 7, and 60 pc for our three variable sources. In combination with
other studies, these results suggest that the outflowing gas in FeLoBAL quasars
resides on a range of scales and includes matter within tens of parsecs of the
central source.Comment: 21 pages, 6 figures, 2 supplementary figures (attached at the end of
the manuscript), accepted to Monthly Notices of the Royal Astronomical
Societ
Using BBN in cosmological parameter extraction from CMB: a forecast for Planck
Data from future high-precision Cosmic Microwave Background (CMB)
measurements will be sensitive to the primordial Helium abundance . At the
same time, this parameter can be predicted from Big Bang Nucleosynthesis (BBN)
as a function of the baryon and radiation densities, as well as a neutrino
chemical potential. We suggest to use this information to impose a
self-consistent BBN prior on and determine its impact on parameter
inference from simulated Planck data. We find that this approach can
significantly improve bounds on cosmological parameters compared to an analysis
which treats as a free parameter, if the neutrino chemical potential is
taken to vanish. We demonstrate that fixing the Helium fraction to an arbitrary
value can seriously bias parameter estimates. Under the assumption of
degenerate BBN (i.e., letting the neutrino chemical potential vary), the
BBN prior's constraining power is somewhat weakened, but nevertheless allows us
to constrain with an accuracy that rivals bounds inferred from present
data on light element abundances.Comment: 14 pages, 4 figures; v2: minor changes, matches published versio
- …