132 research outputs found
Spray characteristics of diesel fuel containing dissolved CO2
The effect of adding CO2 to diesel fuel has been studied by several groups that used tailor-made injectionsystems to achieve notable low Sauter mean diameters (SMDs). In the present study, we use a real commercial fuel injection system and study the effect of the amount of dissolved CO2 on the resulting spray characteristics. In this case, when the mixture enters the injector and flows downstream through the variable cross-section passage toward the discharge orifice, partial nucleation of the dissolved gas is expected to occur at different locations along the duct, which transforms the mixture into tiny bubbles that grow fast downstream. When the mixture is driven out through the discharge orifice, these bubbles undergo arapid flashing process that results in an intensive disintegration of the liquid bulk into small droplets. Inthe present study, we present an experimental study of the atomization process of diesel fuel containing dissolved CO2 that occurs in steady flow conditions. An extensive study was performed to map the effect of the CO2 content on the spray SMD and droplet distribution at different locations downstream the discharge orifice. It is concluded that the atomization of diesel fuel containing dissolved CO2, is significantly promoted by the flash-boiling phenomenon, which results in low SMD sprays, low D0.1 droplets, a faster breakup mechanism, and a more uniform droplet size distributio
Neue Erkenntnisse zur Geologie und Stratigraphie des Helmstedter Braunkohlenreviers
Die Braunkohlenvorkommen des Helmstedter Reviers im Subherzynen Becken sind an halokinetische Muldenstrukturen längs des Staßfurter Zechsteinsattels gebunden und stellen klassische Lagerstätten vom Subrosionstyp dar. Es können die Helmstedt-Oscherslebener-Mulde im Nordwesten sowie die Egelner Mulde im Südosten unterschieden werden. Diverse Publikationen spiegeln jedoch kontroverse Ansichten zur lagerstättengeologischen Situation wider. Eine Zusammenschau bzw. Vereinigung der Thesen bisheriger Veröffentlichungen soll dazu beitragen, das geologische Bild des Helmstedter Reviers neu zu betrachten.The lignite deposits of the Helmstedt mining area are associated to the halokinetic depressions along an Upper Permian salt ridge and belong to the class of typical subrosion-type deposits. Differentiated by their seam extent different parts of the mining area can be distinguished: In the northwestern occurs the Helmstedt-Oschersleben-depression, while in the southeast there is the Egeln depression. Because diverse publications give conflicting opinions, summarizing and comparing these works can help to understand the geology of the Helmstedt mining area
Perception of typical migraine images on the internet: Comparison between a metropolis and a smaller rural city in Germany
The medial portrayal of migraine is often stereotypical and inaccurate but reflects how society perceives migraine. The discrepancy between others' views and the reality of affected individuals may negatively affect access to treatment and the disease course of patients with migraine. This study aimed to investigate whether images presented in the media as typical migraine attacks are perceived as realistic and representative by migraine patients in Rostock, a smaller town in rural Germany, and compare the results to those from Berlin, a large metropolis. We performed an online survey in Rostock. Migraine patients were shown ten images of migraine attacks, which were among the most downloaded stock pictures on the internet under the search term "migraine". They rated on a scale of 0-100 to what extent the pictures were realistic for migraine attacks (realism score), representative of their own migraine (representation score), or the society's view of migraine (society score). In addition, we compared our results with a recently published study from the metropolitan region of Berlin. A total of 174 migraine patients completed our survey. Mean (SD) realism, representation, and society scores were 59.9 (17.5), 56.7 (18.3), and 58.4 (17.1) respectively. Images of older patients were perceived as significantly more realistic and representative than those of younger patients (P < .001). Patients in Rostock (rural region) rated the images as significantly more realistic and representative than survey participants in Berlin (metropolis). Migraine patients in a rural region found typical migraine images only moderately realistic and representative but to a higher degree than their counterparts from a metropolis
Microstructuring YbRh2Si2 for resistance and noise measurements down to ultra-low temperatures
We acknowledge funding by the German Research Foundation (DFG) via the TRR 288 (422213477, project A03, A10 and B02) and projects KR3831/4-1 and BR 4110/1-1. This work was supported by the EU H2020 European Microkelvin Platform EMP, Grant No. 824109.The discovery of superconductivity in the quantum critical Kondo-lattice system YbRh2Si2 at an extremely low temperature of 2 mK has inspired efforts to perform high-resolution electrical resistivity measurements down to this temperature range in highly conductive materials. Here we show that control over the sample geometry by microstructuring using focused-ion-beam techniques allows to reach ultra-low temperatures and increase signal-to-noise ratios (SNRs) tenfold, without adverse effects to sample quality. In five experiments we show four-terminal sensing resistance and magnetoresistance measurements which exhibit sharp phase transitions at the Néel temperature, and Shubnikov–de-Haas (SdH) oscillations between 13 T and 18 T where we identified a new SdH frequency of 0.39 kT. The increased SNR allowed resistance fluctuation (noise) spectroscopy that would not be possible for bulk crystals, and confirmed intrinsic 1/f -type fluctuations. Under controlled strain, two thin microstructured samples exhibited a large increase of TN from 67 mK up to 188 mK while still showing clear signatures of the phase transition and SdH oscillations. Superconducting quantum interference device-based thermal noise spectroscopy measurements in a nuclear demagnetization refrigerator down to 0.95 mK, show a sharp superconducting transition at Tc=1.2 mK. These experiments demonstrate microstructuring as a powerful tool to investigate the resistance and the noise spectrum of highly conductive correlated metals over wide temperature ranges.Publisher PDFPeer reviewe
Multisite reliability of MR-based functional connectivity
Recent years have witnessed an increasing number of multisite MRI functional connectivity (fcMRI) studies. While multisite studies are an efficient way to speed up data collection and increase sample sizes, especially for rare clinical populations, any effects of site or MRI scanner could ultimately limit power and weaken results. Little data exists on the stability of functional connectivity measurements across sites and sessions. In this study, we assess the influence of site and session on resting state functional connectivity measurements in a healthy cohort of traveling subjects (8 subjects scanned twice at each of 8 sites) scanned as part of the North American Prodrome Longitudinal Study (NAPLS). Reliability was investigated in three types of connectivity analyses: (1) seed-based connectivity with posterior cingulate cortex (PCC), right motor cortex (RMC), and left thalamus (LT) as seeds; (2) the intrinsic connectivity distribution (ICD), a voxel-wise connectivity measure; and (3) matrix connectivity, a whole-brain, atlas-based approach assessing connectivity between nodes. Contributions to variability in connectivity due to subject, site, and day-of-scan were quantified and used to assess between-session (test-retest) reliability in accordance with Generalizability Theory. Overall, no major site, scanner manufacturer, or day-of-scan effects were found for the univariate connectivity analyses; instead, subject effects dominated relative to the other measured factors. However, summaries of voxel-wise connectivity were found to be sensitive to site and scanner manufacturer effects. For all connectivity measures, although subject variance was three times the site variance, the residual represented 60–80% of the variance, indicating that connectivity differed greatly from scan to scan independent of any of the measured factors (i.e., subject, site, and day-of-scan). Thus, for a single 5 min scan, reliability across connectivity measures was poor (ICC=0.07–0.17), but increases with increasing scan duration (ICC=0.21–0.36 at 25 min). The limited effects of site and scanner manufacturer support the use of multisite studies, such as NAPLS, as a viable means of collecting data on rare populations and increasing power in univariate functional connectivity studies. However, the results indicate that aggregation of fcMRI data across longer scan durations is necessary to increase the reliability of connectivity estimates at the single-subject level
Multicentre comparison of a diagnostic assay: Aquaporin-4 antibodies in neuromyelitis optica
Objective Antibodies to cell surface central nervous system proteins help to diagnose conditions which often respond to immunotherapies. The assessment of antibody assays needs to reflect their clinical utility. We report the results of a multicentre study of aquaporin (AQP) 4 antibody (AQP4-Ab) assays in neuromyelitis optica spectrum disorders (NMOSD). Methods Coded samples from patients with neuromyelitis optica (NMO) or NMOSD (101) and controls (92) were tested at 15 European diagnostic centres using 21 assays including live (n=3) or fixed cell-based assays (n=10), flow cytometry (n=4), immunohistochemistry (n=3) and ELISA (n=1). Results Results of tests on 92 controls identified 12assays as highly specific (0-1 false-positive results). 32 samples from 50 (64%) NMO sera and 34 from 51 (67%) NMOSD sera were positive on at least two of the 12 highly specific assays, leaving 35 patients with seronegative NMO/spectrum disorder (SD). On the basis of a combination of clinical phenotype and the highly specific assays, 66 AQP4-Ab seropositive samples were used to establish the sensitivities (51.5-100%) of all 21 assays. The specificities (85.8-100%) were based on 92 control samples and 35 seronegative NMO/SD patient samples. Conclusions The cell-based assays were most sensitive and specific overall, but immunohistochemistry or flow cytometry could be equally accurate in specialist centres. Since patients with AQP4-Ab negative NMO/SD require different management, the use of both appropriate control samples and defined seronegative NMOSD samples is essential to evaluate these assays in a clinically meaningful way. The process described here can be applied to the evaluation of other antibody assays in the newly evolving field of autoimmune neurology
Reliability of functional magnetic resonance imaging activation during working memory in a multi-site study: Analysis from the North American Prodrome Longitudinal Study
Multi-site neuroimaging studies offer an efficient means to study brain functioning in large samples of individuals with rare conditions; however, they present new challenges given that aggregating data across sites introduces additional variability into measures of interest. Assessing the reliability of brain activation across study sites and comparing statistical methods for pooling functional data is critical to ensuring the validity of aggregating data across sites. The current study used two samples of healthy individuals to assess the feasibility and reliability of aggregating multi-site functional magnetic resonance imaging (fMRI) data from a Sternberg-style verbal working memory task. Participants were recruited as part of the North American Prodrome Longitudinal Study (NAPLS), which comprises eight fMRI scanning sites across the United States and Canada. In the first study sample (n = 8), one participant from each home site traveled to each of the sites and was scanned while completing the task on two consecutive days. Reliability was examined using generalizability theory. Results indicated that blood oxygen level-dependent (BOLD) signal was reproducible across sites and was highly reliable, or generalizable, across scanning sites and testing days for core working memory ROIs (generalizability ICCs = 0.81 for left dorsolateral prefrontal cortex, 0.95 for left superior parietal cortex). In the second study sample (n = 154), two statistical methods for aggregating fMRI data across sites for all healthy individuals recruited as control participants in the NAPLS study were compared. Control participants were scanned on one occasion at the site from which they were recruited. Results from the image-based meta-analysis (IBMA) method and mixed effects model with site covariance method both showed robust activation in expected regions (i.e. dorsolateral prefrontal cortex, anterior cingulate cortex, supplementary motor cortex, superior parietal cortex, inferior temporal cortex, cerebellum, thalamus, basal ganglia). Quantification of the similarity of group maps from these methods confirmed a very high (96%) degree of spatial overlap in results. Thus, brain activation during working memory function was reliable across the NAPLS sites and both the IBMA and mixed effects model with site covariance methods appear to be valid approaches for aggregating data across sites. These findings indicate that multi-site functional neuroimaging can offer a reliable means to increase power and generalizability of results when investigating brain function in rare populations and support the multi-site investigation of working memory function in the NAPLS study, in particular
Reliability of an fMRI paradigm for emotional processing in a multisite longitudinal study
Multisite neuroimaging studies can facilitate the investigation of brain-related changes in many contexts, including patient groups that are relatively rare in the general population. Though multisite studies have characterized the reliability of brain activation during working memory and motor functional magnetic resonance imaging tasks, emotion processing tasks, pertinent to many clinical populations, remain less explored. A traveling participants study was conducted with eight healthy volunteers scanned twice on consecutive days at each of the eight North American Longitudinal Prodrome Study sites. Tests derived from generalizability theory showed excellent reliability in the amygdala ( Eρ2 = 0.82), inferior frontal gyrus (IFG; Eρ2 = 0.83), anterior cingulate cortex (ACC; Eρ2 = 0.76), insula ( Eρ2 = 0.85), and fusiform gyrus ( Eρ2 = 0.91) for maximum activation and fair to excellent reliability in the amygdala ( Eρ2 = 0.44), IFG ( Eρ2 = 0.48), ACC ( Eρ2 = 0.55), insula ( Eρ2 = 0.42), and fusiform gyrus ( Eρ2 = 0.83) for mean activation across sites and test days. For the amygdala, habituation ( Eρ2 = 0.71) was more stable than mean activation. In a second investigation, data from 111 healthy individuals across sites were aggregated in a voxelwise, quantitative meta-analysis. When compared with a mixed effects model controlling for site, both approaches identified robust activation in regions consistent with expected results based on prior single-site research. Overall, regions central to emotion processing showed strong reliability in the traveling participants study and robust activation in the aggregation study. These results support the reliability of blood oxygen level-dependent signal in emotion processing areas across different sites and scanners and may inform future efforts to increase efficiency and enhance knowledge of rare conditions in the population through multisite neuroimaging paradigms
Inheritance of deleterious mutations at both BRCA1 and BRCA2 in an international sample of 32,295 women
Background: Most BRCA1 or BRCA2 mutation carriers have inherited a single (heterozygous) mutation. Transheterozygotes (TH) who have inherited deleterious mutations in both BRCA1 and BRCA2 are rare, and the consequences of transheterozygosity are poorly understood. Methods: From 32,295 female BRCA1/2 mutation carriers, we identified 93 TH (0.3 %). "Cases" were defined as TH, and "controls" were single mutations at BRCA1 (SH1) or BRCA2 (SH2). Matched SH1 "controls" carried a BRCA1 mutation found in the TH "case". Matched SH2 "controls" carried a BRCA2 mutation found in the TH "case". After matching the TH carriers with SH1 or SH2, 91 TH were matched to 9316 SH1, and 89 TH were matched to 3370 SH2. Results: The majority of TH (45.2 %) involved the three common Jewish mutations. TH were more likely than SH1 and SH2 women to have been ever diagnosed with breast cancer (BC; p = 0.002). TH were more likely to be diagnosed with ovarian cancer (OC) than SH2 (p = 0.017), but not SH1. Age at BC diagnosis was the same in TH vs. SH1 (p = 0.231), but was on average 4.5 years younger in TH than in SH2 (p < 0.001). BC in TH was more likely to be estrogen receptor (ER) positive (p = 0.010) or progesterone receptor (PR) positive (p = 0.013) than in SH1, but less likely to be ER positive (p < 0.001) or PR positive (p = 0.012) than SH2. Among 15 tumors from TH patients, there was no clear pattern of loss of heterozygosity (LOH) for BRCA1 or BRCA2 in either BC or OC. Conclusions: Our observations suggest that clinical TH phenotypes resemble SH1. However, TH breast tumor marker characteristics are phenotypically intermediate to SH1 and SH2
- …