9 research outputs found

    An effective design for polar codes over multipath fading channels

    No full text
    Polar codes, recently adopted in 5G standard due to their excellent performance at a very low complexity compared to other competitive schemes in the literature, are deemed to be a strong candidate for the Internet of Things (IoT) applications as well due to meeting their requirements. However, since polar codes construction is naturally channel-dependent, there has recently been an increasing interest in addressing the challenge of making polar codes work in realistic fading environments as they do in a binary symmetric channel (BSC). Recent studies on polar codes for fading channels have mainly focused on constructing new specific polar codes suitable to particular fading channels. This results in a non-universal code structure, leading to continuous changes in the code structure based on the channel, which is not desirable in practice. To address this problem, we develop and propose a novel transceiver architecture which enables using the polar coding design of a binary input additive white Gaussian noise (BI-AWGN) channel for multipath fading channels without causing any change in the structure of the encoder and decoder sides. This is made possible by eliminating the channel fading effect so that a net AWGN channel can be seen at the input of a simple successive cancelation decoder (SCD). The novelty of the proposed solution lies in using a channel-based orthonormal transformation with optimal power allocation at the transmitter and another transformation at the receiver to make the net, effective channel seen by the SCD very similar to the AWGN. Simulation results show that the proposed design makes the bit error rate (BER) performance of polar codes over a frequency selective fading channel as same as that over an AWGN channel.No sponso

    Improving the physical layer security of IoT-5G systems

    No full text
    Ensuring the security of the Internet of Things (IoT) is deemed as one of the most critical challenges and needs that have to be addressed in order to guarantee the successful deployment of IoT in emerging technologies like 5G. In an effort to address this challenge, in this work, an improved and flexible physical layer security technique, referred to as orthogonal frequency-division multiplexing with subcarrier index selection and artificially interfering signals (OFDM-SIS-AIS), is developed for protecting the transmission of OFDM-based waveforms against eavesdropping in 5G and beyond wireless networks. In this technique, the frequency response of correlated subchannels is first converted into a completely randomized and independent response by means of adaptive interleaving. Then, the whole OFDM block is divided into small subblocks, each containing a set of subcarriers, from which a subset of these subcarriers, which are corresponding to high subchannel gains, are selected and used for data transmission, while the remaining ones, which are corresponding to low subchannel gains, are used for sending artificially interfering signals. The selected subcarriers are determined through an optimization problem that can effectively maximize the signal-to-noise ratio (SNR) at only the legitimate receiver. The obtained results demonstrate a significant improvement in the secrecy gap performance without considering the knowledge of the eavesdropper’s channel nor sharing any keys while maintaining low complexity and high reliability at the legitimate user. These numerous advantages have the potential to make the proposed scheme a consistent candidate technique for secure IoT-5G based services.No sponso

    Unification of Blockchain and Internet of Things (BIoT): requirements, working model, challenges and future directions

    No full text
    corecore