9 research outputs found

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    Oral administration of γ-aminobutyric acid affects heat production in a hot environment in resting humans

    No full text
    Abstract Background Central administration of γ-amino butyric acid (GABA) induces lower body temperature in animals in hot ambient air. However, it is still unknown whether oral GABA administration affects temperature regulation at rest in a hot environment in humans. Therefore, in the present study, we specifically hypothesized that systemic administration of GABA in humans would induce hypothermia in a hot environment and that this response would be observed in association with decreased heat production. Methods Eight male participants drank a 200-ml sports drink with 1 g of GABA (trial G) or without GABA (trial C), then rested for 30 minutes in a sitting position in a hot environment (ambient air temperature 33°C, relative humidity 50%). Results We found that changes in esophageal temperature from before drinking the sports drink were lower in trial G than in trial C (-0.046 ± 0.079°C vs 0.001 ± 0.063°C; P 2 vs 47 ± 8 W/m2; P Conclusions In this study, we have demonstrated that a single oral administration of GABA induced a larger decrease in body core temperature compared to a control condition during rest in a hot environment and that this response was concomitant with a decrease in total heat production.</p

    Improved crystallinity of GaP-based dilute nitride alloys by proton/electron irradiation and rapid thermal annealing

    No full text
    This study presents the positive effects of proton/electron irradiation on the crystallinity of GaP-based dilute nitride alloys. It is found that proton/electron irradiation followed by rapid thermal annealing enhances the PL peak intensity of GaPN alloys, whereas major photovoltaic III–V materials such as GaAs and InGaP generally degrade their crystal quality by irradiation damage. Atomic force microscopy and transmission electron microscopy reveal no degradation of structural defects. GaAsPN solar cell test devices are then fabricated. Results show that the conversion efficiency increases by proton/electron irradiation, which is mainly caused by an increase in the short-circuit current

    Complete remission of metastatic pheochromocytoma in 123I-metaiodobenzylguanidine scintigraphy after a single session of 131I-metaiodobenzylguanidine therapy: a case report

    No full text
    Abstract Background Pheochromocytomas are rare neuroendocrine tumors, with a malignancy frequency of approximately 10%. The treatment of malignant pheochromocytoma is palliative, and the traditional management strategy has limited efficacy. Furthermore, no clear criteria exist for the treatment of metastatic pheochromocytoma, especially for unresectable lesions. We report a case of complete remission of metastatic pheochromocytoma in 123I-metaiodobenzylguanidine (MIBG) scintigraphy after a single session of 131I-MIBG therapy. Case presentation A 61-year-old woman had a right adrenal grand tumor and lymph node metastasis on the hilum of the right kidney, both of which incorporated MIBG. After surgery, immunostaining of a tumor specimen showed expression of the tumor makers chromogranin and synaptophysin. One year postoperatively, abdominal computed tomography revealed a local recurrence and retroperitoneal lymph node swelling. The local recurrence was positive for MIBG uptake, whereas the swollen retroperitoneal lymph nodes were negative. She underwent surgery again, but the local recurrence was unresectable because of rigid adhesion to the surrounding tissue. Immunostaining of an intraoperatively extracted swollen retroperitoneal lymph node showed expression of tumor markers. The patient then underwent a single session of 131I-MIBG therapy (7.4 GBq, 200 mCi), after which the residual lesions no longer incorporated MIBG, and a complete response in 123I- metaiodobenzylguanidine (MIBG) scintigraphy was achieved. The 131I-MIBG treatment was repeated 6 months later. None of the lesions were positive for MIBG uptake. Conclusions 131I-MIBG therapy efficaciously treats unresectable lesions that are positive for MIBG uptake

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    No full text
    corecore