40 research outputs found

    Unexpected Complication of R-CHOP Chemotherapy: Rapidly Progressive Bronchiolitis Obliterans Syndrome

    Get PDF
    Background: Bronchiolitis obliterans syndrome (BOS) is the term used for the progressive obliteration of small airways before the patient has had a confirmatory lung biopsy. It is also recognized as a transplant-related complication. There have been no reports of BOS during initial standard chemotherapy. Case presentation: A 50-year-old woman with newly diagnosed follicular lymphoma grade 2, stage 3A, presented with hypoxia and progressive dyspnoea after the fifth cycle of R-CHOP. High-resolution computed tomography showed air trapping enhanced at the end-expiratory phase. Pulmonary function testing revealed severe obstructive and restrictive failure without bronchodilator response. We diagnosed BOS based on current criteria and treated the patient with glucocorticoids and cyclosporin. She was discharged home on oxygen therapy. However, soon after discharge, her respiratory symptoms deteriorated and she was hospitalized in a palliative care unit. She died of respiratory failure within a year of symptom onset. Conclusions: This is the first case report to describe rapidly progressive BOS in a patient undergoing R-CHOP treatment, which strongly suggests the condition was caused by the chemotherapy. Although a pathological diagnosis was not obtained, the clinical diagnosis of BOS was important so that the patient could receive appropriate treatment and palliative care based on the prognosis of this incurable condition

    COVID-19 vaccine effectiveness against severe COVID-19 requiring oxygen therapy, invasive mechanical ventilation, and death in Japan: A multicenter case-control study (MOTIVATE study).

    Get PDF
    INTRODUCTION: Since the SARS-CoV-2 Omicron variant became dominant, assessing COVID-19 vaccine effectiveness (VE) against severe disease using hospitalization as an outcome became more challenging due to incidental infections via admission screening and variable admission criteria, resulting in a wide range of estimates. To address this, the World Health Organization (WHO) guidance recommends the use of outcomes that are more specific to severe pneumonia such as oxygen use and mechanical ventilation. METHODS: A case-control study was conducted in 24 hospitals in Japan for the Delta-dominant period (August-November 2021; "Delta") and early Omicron (BA.1/BA.2)-dominant period (January-June 2022; "Omicron"). Detailed chart review/interviews were conducted in January-May 2023. VE was measured using various outcomes including disease requiring oxygen therapy, disease requiring invasive mechanical ventilation (IMV), death, outcome restricting to "true" severe COVID-19 (where oxygen requirement is due to COVID-19 rather than another condition(s)), and progression from oxygen use to IMV or death among COVID-19 patients. RESULTS: The analysis included 2125 individuals with respiratory failure (1608 cases [75.7%]; 99.2% of vaccinees received mRNA vaccines). During Delta, 2 doses provided high protection for up to 6 months (oxygen requirement: 95.2% [95% CI:88.7-98.0%] [restricted to "true" severe COVID-19: 95.5% {89.3-98.1%}]; IMV: 99.6% [97.3-99.9%]; fatal: 98.6% [92.3-99.7%]). During Omicron, 3 doses provided high protection for up to 6 months (oxygen requirement: 85.5% [68.8-93.3%] ["true" severe COVID-19: 88.1% {73.6-94.7%}]; IMV: 97.9% [85.9-99.7%]; fatal: 99.6% [95.2-99.97]). There was a trend towards higher VE for more severe and specific outcomes. CONCLUSION: Multiple outcomes pointed towards high protection of 2 doses during Delta and 3 doses during Omicron. These results demonstrate the importance of using severe and specific outcomes to accurately measure VE against severe COVID-19, as recommended in WHO guidance in settings of intense transmission as seen during Omicron

    Living Cell Imaging using a White-light Laser Source

    No full text

    Quantitative coherent anti-Stokes Raman scattering microspectroscopy using a nanosecond supercontinuum light source

    No full text
    International audienceWe describe and characterize a multiplex CARS microspectroscopic system that uses a nanosecond supercontinuum generated from a photonic crystal fiber and a sub-nanosecond pulse laser. This system has a high spectral resolution (2500 cm−1). The estimated spatial resolutions are 0.45 μm (lateral) and 4.5 μm (axial), respectively. This system enables us to obtain CARS spectra and corresponding images in the fingerprint region as well in the CH stretch region. Using this system, we have successfully obtained label-free and multi-mode vibrational images of a yeast cell

    Observation of Raman Optical Activity by Heterodyne-Detected Polarization-Resolved Coherent Anti-Stokes Raman Scattering

    No full text
    International audienceWe report the first observation of Raman optical activity (ROA) by coherent anti-Stokes Raman scattering. Thanks to the more freedom of polarization configurations in coherent anti-Stokes Raman scattering than in spontaneous Raman spectroscopy, the contrast ratio of the chiral signal to the achiral background has been improved markedly. For (-)-β-pinene, it is 2 orders of magnitude better than that in the reported spontaneous ROA measurement. This is also the first measurement of ROA signal using a pulsed laser source

    Label-free tetra-modal molecular imaging of living cells with CARS, SHG, THG and TSFG (coherent anti-Stokes Raman scattering, second harmonic generation, third harmonic generation and third-order sum frequency generation)

    No full text
    International audienceWe have developed a new multimodal molecular imaging system that combines CARS (coherent anti-Stokes Raman scattering), SHG (second harmonic generation), THG (third harmonic generation) and multiplex TSFG (third-order sum frequency generation) using a subnanosecond white-light laser source. Molecular composition and their distribution in living cells are clearly visualized with different contrast enhancements through different mechanisms of CARS, SHG, THG and TSFG. A correlation image of CARS and TSF reveals that the TSF signal is generated predominantly from lipid droplets inside a cell as well as the peripheral cell wall

    Three-pulse multiplex coherent anti-Stokes/Stokes Raman scatterin

    No full text
    International audienceWe have developed a three-pulse non-degenerate multiplex coherent Raman microspectroscopic system using a white-light laser source. The fundamental output (1064 nm) of a Nd:YAG laser is used for the pump radiation with the white-light laser output (1100-1700 nm) for the Stokes radiation to achieve broadband multiplex excitations of vibrational coherences. The second harmonic (532 nm) of the same Nd:YAG laser is used for the probe radiation. Thanks to the large wavelength difference between the pump and probe radiations, coherent anti-Stokes Raman scattering (CARS) and coherent Stokes Raman scattering (CSRS) can be detected simultaneously. Simultaneous detection of CARS and CSRS enables us to obtain information on the electronic resonance effect that affects differently the CARS and CSRS signals. Simultaneous analysis of the CARS and CSRS signals provides us the imaginary part of v(3) without introducing any arbitrary parameter in the maximum entropy method (MEM)

    Surfactant uptake dynamics in mammalian cells elucidated with quantitative coherent anti-stokes Raman scattering microspectroscopy.

    No full text
    The mechanism of surfactant-induced cell lysis has been studied with quantitative coherent anti-Stokes Raman scattering (CARS) microspectroscopy. The dynamics of surfactant molecules as well as intracellular biomolecules in living Chinese Hamster Lung (CHL) cells has been examined for a low surfactant concentration (0.01 w%). By using an isotope labeled surfactant having CD bonds, surfactant uptake dynamics in living cells has been traced in detail. The simultaneous CARS imaging of the cell itself and the internalized surfactant has shown that the surfactant molecules is first accumulated inside a CHL cell followed by a sudden leak of cytosolic components such as proteins to the outside of the cell. This finding indicates that surfactant uptake occurs prior to the cell lysis, contrary to what has been believed: surface adsorption of surfactant molecules has been thought to occur first with subsequent disruption of cell membranes. Quantitative CARS microspectroscopy enables us to determine the molecular concentration of the surfactant molecules accumulated in a cell. We have also investigated the effect of a drug, nocodazole, on the surfactant uptake dynamics. As a result of the inhibition of tubulin polymerization by nocodazole, the surfactant uptake rate is significantly lowered. This fact suggests that intracellular membrane trafficking contributes to the surfactant uptake mechanism
    corecore