25 research outputs found

    Continuous Self-Similarity and SS-Duality

    Get PDF
    We study the spherically symmetric collapse of the axion/dilaton system coupled to gravity. We show numerically that the critical solution at the threshold of black hole formation is continuously self-similar. Numerical and analytical arguments both demonstrate that the mass scaling away from criticality has a critical exponent of γ=0.264\gamma = 0.264.Comment: 17 pages, harvmac, six figures uuencoded in separate fil

    Formation and Evaporation of Charged Black Holes

    Get PDF
    We investigate the dynamical formation and evaporation of a spherically symmetric charged black hole. We study the self-consistent one loop order semiclassical back-reaction problem. To this end the mass-evaporation is modeled by an expectation value of the stress-energy tensor of a neutral massless scalar field, while the charge is not radiated away. We observe the formation of an initially non extremal black hole which tends toward the extremal black hole M=QM=Q, emitting Hawking radiation. If also the discharge due to the instability of vacuum to pair creation in strong electric fields occurs, then the black hole discharges and evaporates simultaneously and decays regularly until the scale where the semiclassical approximation breaks down. We calculate the rates of the mass and the charge loss and estimate the life-time of the decaying black holes.Comment: 23 pages, 7 eps figures, RevTex, accepted for publication in Phys. Rev.

    Effects of Pair Creation on Charged Gravitational Collapse

    Get PDF
    We investigate the effects of pair creation on the internal geometry of a black hole, which forms during the gravitational collapse of a charged massless scalar field. Classically, strong central Schwarzschild-like singularity forms, and a null, weak, mass-inflation singularity arises along the Cauchy horizon, in such a collapse. We consider here the discharge, due to pair creation, below the event horizon and its influence on the {\it dynamical formation} of the Cauchy horizon. Within the framework of a simple model we are able to trace numerically the collapse. We find that a part of the Cauchy horizon is replaced by the strong space-like central singularity. This fraction depends on the value of the critical electric field, EcrE_{\rm cr}, for the pair creation.Comment: LaTex, 27 pages, including 14 figures. Some points are clarified, typos corrected. Version accepted for publication in Phys.Rev.

    The Gowdy T3 Cosmologies revisited

    Get PDF
    We have examined, repeated and extended earlier numerical calculations of Berger and Moncrief for the evolution of unpolarized Gowdy T3 cosmological models. Our results are consistent with theirs and we support their claim that the models exhibit AVTD behaviour, even though spatial derivatives cannot be neglected. The behaviour of the curvature invariants and the formation of structure through evolution both backwards and forwards in time is discussed.Comment: 11 pages, LaTeX, 6 figures, results and conclusions revised and (considerably) expande

    Late-time evolution of nonlinear gravitational collapse

    Get PDF
    We study numerically the fully nonlinear gravitational collapse of a self-gravitating, minimally-coupled, massless scalar field in spherical symmetry. Our numerical code is based on double-null coordinates and on free evolution of the metric functions: The evolution equations are integrated numerically, whereas the constraint equations are only monitored. The numerical code is stable (unlike recent claims) and second-order accurate. We use this code to study the late-time asymptotic behavior at fixed rr (outside the black hole), along the event horizon, and along future null infinity. In all three asymptotic regions we find that, after the decay of the quasi-normal modes, the perturbations are dominated by inverse power-law tails. The corresponding power indices agree with the integer values predicted by linearized theory. We also study the case of a charged black hole nonlinearly perturbed by a (neutral) self-gravitating scalar field, and find the same type of behavior---i.e., quasi-normal modes followed by inverse power-law tails, with the same indices as in the uncharged case.Comment: 14 pages, standard LaTeX, 18 Encapsulated PostScript figures. A new convergence test and a determination of QN ringing were added, in addition to correction of typos and update of reference

    Critical phenomena of collapsing massless scalar wave packets

    Full text link
    An analytical model that represents the collapse of a massless scalar wave packet with continuous self-similarity is constructed, and critical phenomena are found. In the supercritical case, the mass of black holes is finite and has the form M(pp)γM \propto (p - p^{*})^{\gamma}, with γ=1/2\gamma = 1/2.Comment: Latex file, including 2 figures, avalaible upon reques

    Quasi-spherical approximation for rotating black holes

    Get PDF
    We numerically implement a quasi-spherical approximation scheme for computing gravitational waveforms for coalescing black holes, testing it against angular momentum by applying it to Kerr black holes. As error measures, we take the conformal strain and specific energy due to spurious gravitational radiation. The strain is found to be monotonic rather than wavelike. The specific energy is found to be at least an order of magnitude smaller than the 1% level expected from typical black-hole collisions, for angular momentum up to at least 70% of the maximum, for an initial surface as close as r=3mr=3m.Comment: revised version, 8 pages, RevTeX, 8 figures, epsf.sty, psfrag.sty, graphicx.st

    Gravitational collapse of massless scalar field and radiation fluid

    Get PDF
    Several classes of conformally-flat and spherically symmetric exact solutions to the Einstein field equations coupled with either a massless scalar field or a radiation fluid are given, and their main properties are studied. It is found that some represent the formation of black holes due to the gravitational collapse of the matter fields. When the spacetimes have continuous self-similarity (CSS), the masses of black holes take a scaling form MBH(PP)γM_{BH} \propto (P - P^{*})^{\gamma}, where γ=0.5\gamma = 0.5 for massless scalar field and γ=1\gamma = 1 for radiation fluid. The reasons for the difference between the values of γ\gamma obtained here and those obtained previously are discussed. When the spacetimes have neither CSS nor DSS (Discrete self-similarity), the masses of black holes always turn on with finite non-zero values.Comment: Two figures have been removed, and the text has been re-written. To appear in Phys. Rev.

    Dimensional Dependence of Black Hole Formation in Self-Similar Collapse of Scalar Field

    Get PDF
    We study classical and quantum self-similar collapses of a massless scalar field in higher dimensions, and examine how the increase in the number of dimensions affects gravitational collapse and black hole formation. Higher dimensions seem to favor formation of black hole rather than other final states, in that the initial data space for black hole formation enlarges as dimension increases. On the other hand, the quantum gravity effect on the collapse lessens as dimension increases. We also discuss the gravitational collapse in a brane world with large but compact extra dimensions.Comment: Improved a few arguments and added a figur

    Adaptive Mesh Refinement for Characteristic Grids

    Full text link
    I consider techniques for Berger-Oliger adaptive mesh refinement (AMR) when numerically solving partial differential equations with wave-like solutions, using characteristic (double-null) grids. Such AMR algorithms are naturally recursive, and the best-known past Berger-Oliger characteristic AMR algorithm, that of Pretorius & Lehner (J. Comp. Phys. 198 (2004), 10), recurses on individual "diamond" characteristic grid cells. This leads to the use of fine-grained memory management, with individual grid cells kept in 2-dimensional linked lists at each refinement level. This complicates the implementation and adds overhead in both space and time. Here I describe a Berger-Oliger characteristic AMR algorithm which instead recurses on null \emph{slices}. This algorithm is very similar to the usual Cauchy Berger-Oliger algorithm, and uses relatively coarse-grained memory management, allowing entire null slices to be stored in contiguous arrays in memory. The algorithm is very efficient in both space and time. I describe discretizations yielding both 2nd and 4th order global accuracy. My code implementing the algorithm described here is included in the electronic supplementary materials accompanying this paper, and is freely available to other researchers under the terms of the GNU general public license.Comment: 37 pages, 15 figures (40 eps figure files, 8 of them color; all are viewable ok in black-and-white), 1 mpeg movie, uses Springer-Verlag svjour3 document class, includes C++ source code. Changes from v1: revised in response to referee comments: many references added, new figure added to better explain the algorithm, other small changes, C++ code updated to latest versio
    corecore