2 research outputs found

    Current Studies and Applications of Krill Herd and Gravitational Search Algorithms in Healthcare

    Full text link
    Nature-Inspired Computing or NIC for short is a relatively young field that tries to discover fresh methods of computing by researching how natural phenomena function to find solutions to complicated issues in many contexts. As a consequence of this, ground-breaking research has been conducted in a variety of domains, including synthetic immune functions, neural networks, the intelligence of swarm, as well as computing of evolutionary. In the domains of biology, physics, engineering, economics, and management, NIC techniques are used. In real-world classification, optimization, forecasting, and clustering, as well as engineering and science issues, meta-heuristics algorithms are successful, efficient, and resilient. There are two active NIC patterns: the gravitational search algorithm and the Krill herd algorithm. The study on using the Krill Herd Algorithm (KH) and the Gravitational Search Algorithm (GSA) in medicine and healthcare is given a worldwide and historical review in this publication. Comprehensive surveys have been conducted on some other nature-inspired algorithms, including KH and GSA. The various versions of the KH and GSA algorithms and their applications in healthcare are thoroughly reviewed in the present article. Nonetheless, no survey research on KH and GSA in the healthcare field has been undertaken. As a result, this work conducts a thorough review of KH and GSA to assist researchers in using them in diverse domains or hybridizing them with other popular algorithms. It also provides an in-depth examination of the KH and GSA in terms of application, modification, and hybridization. It is important to note that the goal of the study is to offer a viewpoint on GSA with KH, particularly for academics interested in investigating the capabilities and performance of the algorithm in the healthcare and medical domains.Comment: 35 page

    GOOSE Algorithm: A Powerful Optimization Tool for Real-World Engineering Challenges and Beyond

    Full text link
    This study proposes the GOOSE algorithm as a novel metaheuristic algorithm based on the goose's behavior during rest and foraging. The goose stands on one leg and keeps his balance to guard and protect other individuals in the flock. The GOOSE algorithm is benchmarked on 19 well-known benchmark test functions, and the results are verified by a comparative study with genetic algorithm (GA), particle swarm optimization (PSO), dragonfly algorithm (DA), and fitness dependent optimizer (FDO). In addition, the proposed algorithm is tested on 10 modern benchmark functions, and the gained results are compared with three recent algorithms, such as the dragonfly algorithm, whale optimization algorithm (WOA), and salp swarm algorithm (SSA). Moreover, the GOOSE algorithm is tested on 5 classical benchmark functions, and the obtained results are evaluated with six algorithms, such as fitness dependent optimizer (FDO), FOX optimizer, butterfly optimization algorithm (BOA), whale optimization algorithm, dragonfly algorithm, and chimp optimization algorithm (ChOA). The achieved findings attest to the proposed algorithm's superior performance compared to the other algorithms that were utilized in the current study. The technique is then used to optimize Welded beam design and Economic Load Dispatch Problem, three renowned real-world engineering challenges, and the Pathological IgG Fraction in the Nervous System. The outcomes of the engineering case studies illustrate how well the suggested approach can optimize issues that arise in the real-world
    corecore